【導(dǎo)讀】傳感器在受到外界加速度作用時(shí),敏感元件會(huì)發(fā)生方向性的偏移,這種變化導(dǎo)致了電容值的變化,然后通過外圍電路測量加速度值。電容式加速度傳感器包括敏感元件部分和檢測電路部分。
微電容式加速度傳感器常用的電容式結(jié)構(gòu)有兩種:一種是梳齒型電容式結(jié)構(gòu);另一種是柵型電容式結(jié)構(gòu)。這兩種類型結(jié)構(gòu)的電容檢測方式有所不同,所以其性能在相等條件下也有差異。梳齒型傳感器是通過改變電容的極板間距來檢測加速度,而柵型結(jié)構(gòu)是通過改變電容的極板面積來檢測加速度。在梳齒型結(jié)構(gòu)中,壓膜阻尼占主導(dǎo)因素,其由可動(dòng)極板相對固定極板的垂直方向運(yùn)動(dòng)而產(chǎn)生;而在柵型結(jié)構(gòu)中,滑膜阻尼占主導(dǎo)因素,其是由可動(dòng)極板相對固定極板的切向運(yùn)動(dòng)而產(chǎn)生的。根據(jù)傳感器的理論模型分析,阻尼對器件的性能影響不容忽視,阻尼越大,機(jī)械噪聲越小,品質(zhì)因素越高,動(dòng)態(tài)特性也就越好?;ぷ枘嵋话阈∮趬耗ぷ枘?,所以,在相同情況下,柵型結(jié)構(gòu)器件性能更好。
本文基于MEMS工藝設(shè)計(jì)了一款具有8個(gè)支撐梁的新型雙軸加速度傳感器,該傳感器結(jié)構(gòu)具有較小地氣體阻尼。另外,文中還通過Ansys軟件對器件的性能進(jìn)行了仿真,其結(jié)果驗(yàn)證了結(jié)構(gòu)設(shè)計(jì)的可行性。
1 結(jié)構(gòu)設(shè)計(jì)與理論分析
1.1 結(jié)構(gòu)設(shè)計(jì)
該加速度傳感器由4個(gè)一字梁、4個(gè)回形支撐梁、X軸和Y軸向的敏感質(zhì)量塊、鋁電極和硼酸玻璃襯底組成。X軸和Y軸向的敏感質(zhì)量塊經(jīng)由一字梁和回行支撐梁固定在壓焊塊上。整體質(zhì)量塊劃分為4個(gè)區(qū)域,在每個(gè)區(qū)域上制作了一組柵型電極,這4組柵型電極均是檢測電容的可動(dòng)極板,其中X軸和Y軸方向上各有兩組。柵型電容的輸入引線、輸出引線、相互連接引線和固定鋁電極均制作在硼酸玻璃襯底上。設(shè)計(jì)的加速度傳感器整體結(jié)構(gòu)如圖1所示。
1.2 檢測原理及交叉干擾分析
圖2所示為X軸向電容檢測原理示意圖,圖2(a)為柵型可動(dòng)極板隨加速度變化的結(jié)構(gòu)示意圖,圖2(b)所示為其等效電路。當(dāng)加速度在X軸水平方向上未受到外界加速度作用時(shí),可動(dòng)?xùn)判蜅l保持在初始的平衡位置,當(dāng)在X軸方向上受到外界加速度作用時(shí),敏感質(zhì)量塊將沿著水平面左右移動(dòng),如圖2(a)所示,則柵型條與鋁電極間的覆蓋寬度發(fā)生了變化,隨之電極之間的電容值也有所改變。設(shè)可動(dòng)極板向右運(yùn)動(dòng),則電容C1減少,此時(shí),C2將增大相同量,從而實(shí)現(xiàn)了X軸向的差分檢測電容。
當(dāng)加速度傳感器受到平行于Y軸方向上的加速度作用時(shí),從傳感器的結(jié)構(gòu)圖中可看出,Y軸向的檢測電容發(fā)生了變化因而有信號輸出,但X軸向的可動(dòng)?xùn)判蜅l和鋁電極之間的電容值并未發(fā)生改變,故X軸向的檢測單元沒有電信號輸出。當(dāng)加速度傳感器受到平行于X軸方向上的加速度作用時(shí),同上分析,只有軸向的檢測單元有電信號輸出。故設(shè)計(jì)的傳感器結(jié)構(gòu)解決了X、Y軸向間的交叉干擾問題,其交叉耦合度近似為0。
[page]
2 信號檢測電路測試原理
圖3為該加速度傳感器的檢測電路。該電路是利用電荷法來測量電容差值,當(dāng)有加速度時(shí),差分電容的共同輸出端有電荷輸出,其輸出電荷值為(C1-C2)Vsin,因電容Cp,所以電流不能流入到放大器的輸入端,為了差分電荷全流入到反饋電容Cf中,放大器將調(diào)整輸出電壓直到差分輸入電壓為零,結(jié)果寄生電容的兩端電壓也可視作為零,從而有效消除寄生電容的干擾。電路中,電阻的作用是給電路提供直流通道,保持電路正常工作,Vsin和-Vsin為兩路載波正弦信號,分別接到電容C1和C2上。
式中,Wo為載波信號的頻率,Vin為載波信號的幅值。
3 有限元分析及模擬驗(yàn)證
進(jìn)行的有限元分析主要包括靜力分析和模態(tài)分析。靜力分析主要是確定傳感器結(jié)構(gòu)的靈敏度和抗振強(qiáng)度;模態(tài)分析主要用于確定傳感器的諧振頻率。采用的敏感材料為普通單晶硅,硅的密度值為2.33×103 kg/m3,彈性模量為1.3×105MPa,泊松比為0.278。柵型條的長度為1 575μm,與鋁電極之間的間距為5μm,柵型條的個(gè)數(shù)為44。圖4為所建Ansys仿真模型。
圖4
結(jié)合庫埃特流模型和納維-斯托克斯方程可得出,滑膜阻尼的阻尼系數(shù)為
式(8)中A、μ分別表示可動(dòng)極板的面積與氣體動(dòng)態(tài)黏滯系數(shù);標(biāo)態(tài)下空氣黏滯系數(shù)為1.82×105Pa·s,對于該加速度計(jì)而言;計(jì)算出的阻尼系數(shù)為8.6×102,敏感質(zhì)量塊的質(zhì)量為1.23×10-7kg;支撐梁剛度為2.4×1012N·m-1;得出的阻尼比為0.83。根據(jù)傳感器的理論模型動(dòng)態(tài)特性分析,最優(yōu)阻尼比為0.7,據(jù)此可通過該結(jié)構(gòu)的尺寸進(jìn)行優(yōu)化。
相關(guān)閱讀:
經(jīng)驗(yàn)分享:高靈敏壓力傳感器過載保護(hù)設(shè)計(jì)
溫度檢測設(shè)計(jì)就選模擬溫度傳感器,為啥?
全面解析傳感器的要點(diǎn)