- 移動(dòng)設(shè)備的觸摸傳感技術(shù)簡(jiǎn)介
- 各種觸摸技術(shù)的對(duì)比
- 各種觸摸設(shè)備的人機(jī)接口
- 觸摸技術(shù)的發(fā)展趨勢(shì)
智能手機(jī)等新型消費(fèi)電子產(chǎn)品使得觸摸屏開(kāi)始風(fēng)靡,觸摸傳感器提供方便的控制方式,幾乎可用于控制任何類型的設(shè)備。觸摸傳感控制器目前提供一些通用的性能選項(xiàng)和形態(tài),如滑塊和鄰近傳感器。觸摸傳感器技術(shù)的進(jìn)步使傳感器驅(qū)動(dòng)型接口更易于實(shí)現(xiàn),對(duì)終端用戶更為直觀和簡(jiǎn)單。
大多數(shù)觸摸傳感控制器依據(jù)所檢測(cè)到的電容變化來(lái)工作(見(jiàn)圖1)——當(dāng)某種物體或某個(gè)人接近或觸摸傳感器的導(dǎo)電金屬片時(shí),手指與金屬片之間的電容發(fā)生變化。導(dǎo)電物體(如手指)在傳感器附近移動(dòng)將改變電容傳感器的電場(chǎng)線并使電容發(fā)生變化??刂齐娐房蓽y(cè)出電容的變化。
工業(yè)應(yīng)用系統(tǒng)從多年前開(kāi)始就使用這種電容檢測(cè)技術(shù)來(lái)測(cè)量液位、濕度和材料成份。這種從這些應(yīng)用發(fā)展而來(lái)的技術(shù)逐漸演化成人機(jī)接口。
觸摸傳感器接口通常通過(guò)測(cè)量與傳感器墊片相連的電路的阻抗來(lái)檢測(cè)電容變化。觸摸控制器周期性地測(cè)量傳感器輸入通道的阻抗并用這些值來(lái)導(dǎo)出一個(gè)內(nèi)部基準(zhǔn),即校準(zhǔn)阻抗??刂破饕赃@個(gè)阻抗值為基礎(chǔ)判定是否發(fā)生了觸摸事件。
下面的簡(jiǎn)化公式表明了手指逼近對(duì)觸摸墊片電容產(chǎn)生的主要影響。這個(gè)公式可用于確定傳感器墊片的電容和強(qiáng)度。
*C表示電容,單位為法拉
*A是單個(gè)金屬墊片的面積,單位為平方米
*εr是金屬墊片間材料的相對(duì)靜態(tài)介電常數(shù)(真空=1)
*ε0是自由空間的介電常數(shù)=8.854×10(SUP/)-12(/SUP)F/m
*D是板之間的距離或間隔,單位為米。
另外,觸摸強(qiáng)度隨壓力、觸摸面積或電容的增加而增大。D減小等價(jià)于電容增大或觸摸強(qiáng)度增大。
這個(gè)方程表明,覆膜厚度及其介電常數(shù)對(duì)觸摸強(qiáng)度影響很大。該方程還表明,電容傳感器本質(zhì)上對(duì)周圍環(huán)境和觸摸激勵(lì)的特性敏感——不管觸摸來(lái)自手指、乙烯基、橡膠、棉花、皮革或水(見(jiàn)圖1)。
圖1:觸摸靈敏度依賴于覆膜材料、墊片尺寸和厚度。
表1列出了各種常用覆膜材料的介電常數(shù)。我們可以基于這些值來(lái)考察觸摸傳感器在廚房中的應(yīng)用,因?yàn)樵趶N房中這些傳感器很容易濺上食用油。
表1:介電常數(shù)。
典型的食用油如橄欖油或杏仁油的介電常數(shù)在2.8-3.0之間。石蠟在華氏68度時(shí)的介電常數(shù)在2.2-4.7之間。這些材料的介電常數(shù)接近甚至小于傳感器常用覆膜聚碳酸脂(2.9-3.2)或ABS材料(2.87-3.0)的介電常數(shù)。因而,油對(duì)傳感器的操作沒(méi)有多大影響。
相反,甘油的介電常數(shù)在47-68之間,水的介電常數(shù)約為80。盡管這些材料的介電常數(shù)比覆膜材料高,對(duì)于使用數(shù)字觸摸檢測(cè)技術(shù)(如ATLab公司開(kāi)發(fā)并擁有產(chǎn)權(quán)的FMA1127觸摸傳感器控制器所使用的技術(shù))的觸摸傳感器來(lái)說(shuō),由于傳感器墊片和濺上的液體都沒(méi)有接地,濺上這些液體不會(huì)引起任何異常行為。
盡管觸摸傳感器的操作細(xì)節(jié)和接口依賴于具體的應(yīng)用,一般來(lái)說(shuō),容性傳感器接口電路和檢測(cè)方法有模擬和數(shù)字兩種類型。一種模擬技術(shù)是測(cè)量頻率或工作周期,這些量因?yàn)樵谑种负偷刂g引入額外的電容而發(fā)生變化(見(jiàn)圖2)。
圖2:模擬觸摸方案;由于需使用參考地,可能會(huì)受到水滴的影響。
利用這種技術(shù)和高分辨率的模數(shù)轉(zhuǎn)換器(ADC),可以把測(cè)到的模擬電壓轉(zhuǎn)換成數(shù)字代碼。得益于混合信號(hào)技術(shù)的進(jìn)步,最新款的電容/數(shù)字轉(zhuǎn)換器把高性能模擬前端與低功率高性能ADC集成在一起。
模擬接口電路的一個(gè)缺點(diǎn)是容性傳感器可能會(huì)受到難以捉摸的噪聲、串?dāng)_、耦合的影響。另外,傳感器輸出的動(dòng)態(tài)范圍受到電源電壓的限制,而隨著半導(dǎo)體制造技工藝節(jié)點(diǎn)的縮小該電源電壓在不斷降低。
[page]
如果使用深亞微米CMOS技術(shù)把傳感器電路與復(fù)雜的數(shù)字信號(hào)處理模塊集成到相同的基底上,情況會(huì)變得更具挑戰(zhàn)性。為避免外部干擾,該器件可能會(huì)要求使用軟件工作區(qū),這增加了與之接口的微控制器的存儲(chǔ)器開(kāi)銷和性能開(kāi)銷。
全數(shù)字傳感方法(見(jiàn)圖3)可避免與模擬方法有關(guān)的問(wèn)題。數(shù)字方法通過(guò)使電容成為RC延時(shí)線的一部分來(lái)檢測(cè)傳感器電容的變化。
圖3:數(shù)字觸摸方案;在存在水滴時(shí)仍具有魯棒的性能。
圖3中簡(jiǎn)單的全數(shù)字型時(shí)間/數(shù)字轉(zhuǎn)換器(TDC)測(cè)量該延時(shí)線相對(duì)于基準(zhǔn)RC延時(shí)線的差并輸出阻抗的變化。寄生電容對(duì)RC延時(shí)的影響可通過(guò)加電補(bǔ)償來(lái)消除。
手指碰到傳感器墊片使電容增大進(jìn)而提高了RC延時(shí)時(shí)間并導(dǎo)致阻抗變化。把這個(gè)阻抗與校準(zhǔn)阻抗對(duì)比可確定是否發(fā)生了觸摸事件。該傳感方案很容易通過(guò)調(diào)整RC延時(shí)線的電阻來(lái)改善性能。
MCU接口
不管使用模擬方法還是數(shù)字方法,觸摸傳感器控制器都可以使用簡(jiǎn)單的SPI或I(SUP/)2(/SUP)C接口與微控制器相連。MCU(主)通常以主從模式與觸摸傳感器控制器(從)進(jìn)行數(shù)據(jù)交換。
如果MCU沒(méi)有這樣的串行接口,可以使用軟件模擬串行接口的方法,但這種方法增加了存儲(chǔ)器和性能的開(kāi)銷。把觸摸傳感器控制器與微控制器集成在一起的芯片已在不久前上市。
消費(fèi)電子、家庭自動(dòng)化和工業(yè)要求
相對(duì)于傳統(tǒng)機(jī)械按鈕、滑塊、轉(zhuǎn)輪和開(kāi)關(guān),觸摸傳感器控制提供了靈活、可靠且高性價(jià)比的替代方案。最新的觸摸傳感器為設(shè)計(jì)者發(fā)揮其創(chuàng)造性創(chuàng)造了條件,設(shè)計(jì)者在開(kāi)發(fā)接口時(shí)可隱藏或露出按鈕、或采用其他形態(tài)觸摸板的模式。表2和圖4顯示了不同的傳感器形狀和應(yīng)用。
圖4:滑塊、滾輪、觸摸按鈕和臨近傳感應(yīng)用的例子。
表2:各種應(yīng)用的觸摸控制方案。
臨近觸摸控制對(duì)只要求一或兩個(gè)按鈕的簡(jiǎn)單接口提供了一種有吸引力的替代方案。臨近傳感器易于整合進(jìn)最終的產(chǎn)品設(shè)計(jì)中,并具有功耗低和壽命長(zhǎng)等長(zhǎng)期優(yōu)勢(shì)。
金屬門(mén)把手是一種理想的臨近傳感器應(yīng)用。極為敏感的傳感器可以檢測(cè)到是否有手在接近門(mén)把手,系統(tǒng)在檢測(cè)到接近行為后會(huì)給需要大功率的安防硬件通電。作為汽車報(bào)警系統(tǒng)的一部分,系統(tǒng)可把每次臨近檢測(cè)記錄下來(lái)并通知車主(或許可通過(guò)手機(jī))有人多次試圖拉開(kāi)車門(mén)。
當(dāng)金屬物體面積為10mm(SUP/)2(/SUP),覆膜厚度為1mm時(shí),臨近傳感器可以在距離大于2英寸時(shí)檢測(cè)到手的接近。除了門(mén)把手之外,臨近觸摸還可用于家用電器、MP3播放器、遙控器和移動(dòng)電話。
復(fù)雜的LCD觸摸屏方案
觸摸傳感器譜系的一端是簡(jiǎn)單的臨近傳感器,另一端是復(fù)雜的觸控LCD,為許多常見(jiàn)產(chǎn)品提供了高端感覺(jué)。最值得一提的是,蘋(píng)果公司的iPod和iPhone等產(chǎn)品已急劇提升了消費(fèi)者的期望。從GPS設(shè)備和通用遙控器到數(shù)字相框和連網(wǎng)型冰箱和洗衣機(jī),類似的觸摸屏技術(shù)可以增強(qiáng)各種電子產(chǎn)品的功能。
電話和GPS設(shè)備等緊湊型設(shè)備可使用靈活的觸摸傳感器PCB作為顯示器的外層。在這些應(yīng)用中,容性觸摸模塊可使用氧化銦錫(ITO)層在玻璃或塑料屏上實(shí)現(xiàn)透明的傳感器墊片和引線(見(jiàn)圖5)。
圖5:使用FMA1127實(shí)現(xiàn)的觸摸屏及PCB和觸摸屏的疊層安排。利用TDC比較由檢測(cè)電容形成RC延時(shí)線與基準(zhǔn)RC延時(shí)線的延時(shí)差別。使用差動(dòng)信號(hào)消除或降低了相關(guān)/相干噪聲源的影響,無(wú)需地層。
其他應(yīng)用還包括用來(lái)控制顯示器開(kāi)啟的觸摸檢測(cè)傳感器。當(dāng)檢測(cè)不到觸摸時(shí),顯示器關(guān)斷,從而可以最大限度地降低系統(tǒng)功耗。
觸摸技術(shù)的發(fā)展趨勢(shì)
由于沒(méi)有活動(dòng)部件且易于適應(yīng)曲面外形,觸摸傳感器開(kāi)關(guān)是汽車應(yīng)用的理想選擇。但汽車應(yīng)用對(duì)觸摸技術(shù)提出了更高的要求,汽車制造商要求提供成本低、工作溫度寬的汽車級(jí)觸摸傳感器控制器。
關(guān)鍵是降低觸摸傳感器方案的總實(shí)現(xiàn)成本。價(jià)格合適的觸摸傳感器為汽車設(shè)計(jì)工程師實(shí)現(xiàn)新穎的接口特性提供了條件。任天堂公司的Wii使用了3維定位傳感技術(shù)。計(jì)算機(jī)輔助設(shè)計(jì)領(lǐng)域的一項(xiàng)最新創(chuàng)新是3維鼠標(biāo),工程師可在三維空間移動(dòng)鼠標(biāo)更直觀地對(duì)所設(shè)計(jì)的產(chǎn)品進(jìn)行控制。
另外,微軟現(xiàn)正以MicrosoftSuRFace觸摸電腦展示其對(duì)未來(lái)用戶接口的展望。該接口使用的觸摸技術(shù)與iPod相類似,可識(shí)別多點(diǎn)接觸及實(shí)際物體(如畫(huà)筆),能符合直覺(jué)的方式恰當(dāng)?shù)嘏c接觸事件互動(dòng)。