【導(dǎo)讀】電力電子產(chǎn)品設(shè)計(jì)人員致力于提升工業(yè)和汽車系統(tǒng)的功率效率和功率密度,這些設(shè)計(jì)涵蓋多軸驅(qū)動(dòng)器、太陽(yáng)能、儲(chǔ)能、電動(dòng)汽車充電站和電動(dòng)汽車車載充電器等。
這些系統(tǒng)的主要設(shè)計(jì)挑戰(zhàn)之一是在降低系統(tǒng)成本的同時(shí),實(shí)現(xiàn)更出色的實(shí)時(shí)控制性能。要應(yīng)對(duì)這一挑戰(zhàn),常用的方法是使用擁有超低延遲控制環(huán)路處理功能的模擬和控制外設(shè)的高度集成的微控制器 (MCU) 。
實(shí)時(shí)控制性能:延遲是關(guān)鍵
在深入應(yīng)用實(shí)例之前,先讓我們簡(jiǎn)要看下“延遲”。在多軸驅(qū)動(dòng)器、機(jī)器人、具有儲(chǔ)能系統(tǒng)的光伏逆變器、電動(dòng)汽車充電站和電動(dòng)汽車中,控制性能與 MCU 對(duì)信號(hào)進(jìn)行采樣、處理和控制的速度直接相關(guān)。圖 1 展示了實(shí)時(shí)信號(hào)鏈和信號(hào)延遲之間的關(guān)系,信號(hào)延遲指從模數(shù)轉(zhuǎn)換器 (ADC) 測(cè)量信號(hào),到 CPU 處理信息,以及脈寬調(diào)制器 (PWM) 控制功率的時(shí)間。這個(gè)時(shí)間需要盡可能小,才能實(shí)現(xiàn)超低延遲控制環(huán)路處理。
圖 1:實(shí)時(shí)性能和延遲的概念
對(duì)于數(shù)字電源來說,實(shí)現(xiàn)較高的功率密度意味著要將 DC/DC 的開關(guān)頻率從 50kHz 提高到 100kHz、500kHz 或更高。如果您使用的 MCU 以 100MHz 運(yùn)行并且穩(wěn)壓環(huán)路同步到 PWM 頻率,在 10kHz 時(shí),PWM 中斷之間的可用 CPU 周期數(shù)為 10,000,而在 100kHz 時(shí)會(huì)降為 1,000。隨著頻率上升,可用于檢測(cè)流程控制的時(shí)間縮短,因此您需要優(yōu)化 MCU 架構(gòu),以便在實(shí)時(shí)信號(hào)鏈中盡量節(jié)省每個(gè)周期的時(shí)間。
在光伏逆變器和儲(chǔ)能系統(tǒng)中實(shí)現(xiàn)下一代電源
如圖 2 所示,光伏逆變器市場(chǎng)不斷發(fā)展,出現(xiàn)了集成儲(chǔ)能系統(tǒng)的混合逆變器,帶來了控制雙向能量轉(zhuǎn)換的挑戰(zhàn)。單芯片架構(gòu)需要使用具有許多高分辨率 PWM 通道和額外高帶寬 ADC 輸入的 MCU,例如 TMS320F28P650DK C2000Tm 32 位 MCU。
圖 2:集成了儲(chǔ)能系統(tǒng)的光伏逆變器架構(gòu)
為滿足許多應(yīng)用中對(duì)可再生能源不斷增長(zhǎng)的需求,光伏逆變器需要更高的功率效率和更好的總諧波失真性能。一種方法是使用更新的多相多級(jí)逆變器電源架構(gòu)。這類架構(gòu)通常通過一組復(fù)雜的電源算法和額外的外部邏輯(例如復(fù)雜的可編程邏輯器件或現(xiàn)場(chǎng)可編程門陣列)來實(shí)現(xiàn),以便使用正確的序列安全地打開和關(guān)閉電源開關(guān)。這種方法會(huì)增加布板空間和系統(tǒng)成本。
能在不同 PWM 模塊中支持板載定制、最小死區(qū)和非法組合邏輯(用于防止破壞性上電/斷電序列的 MCU 特性)的 MCU 可讓設(shè)計(jì)人員在降低成本的同時(shí),減少或甚至移除外部邏輯,從而進(jìn)一步簡(jiǎn)化設(shè)計(jì)。
此外,務(wù)必將 PWM 單元和集成的模擬窗口比較器進(jìn)行緊密耦合,以便為電源轉(zhuǎn)換器提供過流和過壓保護(hù)?;陔娫赐?fù)洌x擇的 MCU 可能需要搭載能夠?qū)崿F(xiàn)對(duì)諧振模式轉(zhuǎn)換器峰值電流和谷值電流模式控制的 PWM 單元。
在電動(dòng)汽車車載充電器中實(shí)現(xiàn)更輕松、更快速的集成
隨著全球電動(dòng)汽車數(shù)量的增長(zhǎng),設(shè)計(jì)人員需要找到新的解決方案,以便使車載充電器進(jìn)一步集成并降低其成本。典型的實(shí)現(xiàn)方案為兩個(gè)彼此隔離的 MCU,一個(gè)用于車載充電器功率因數(shù)校正,另一個(gè)用于車載充電器 DC/DC。
盡管采用單個(gè) MCU 會(huì)增加將信號(hào)發(fā)送回 MCU 所需的隔離器件,但其增加的成本可與減少元件數(shù)量節(jié)省的成本相抵,包括減少 CAN 收發(fā)器、穩(wěn)壓器、電源管理集成電路、運(yùn)算放大器以及實(shí)現(xiàn)返回主機(jī) MCU 通信所需的隔離。
圖 3 展示了單個(gè) MCU 控制高達(dá) 22kW 的三相車載充電器功率級(jí)拓?fù)?。PFC 級(jí)是兩相交錯(cuò)式圖騰柱,而 DC/DC 級(jí)是雙電容-電感-電感-電感-電容 (CLLLC),可減小變壓器尺寸和場(chǎng)效應(yīng)晶體管的電流等級(jí)。
圖 3:由單個(gè) MCU 控制的三相電動(dòng)汽車車載充電器(PFC 與 DC/DC)
確定所需的最少 MCU 硬件資源(PWM、ADC、比較器)后,您可能還希望在降低 CPU 開銷的同時(shí),實(shí)現(xiàn)更多的軟件集成。由于集成可以實(shí)現(xiàn)對(duì)單個(gè)器件上更多信號(hào)的采樣,選擇的 MCU 如包含內(nèi)置基于硬件的過采樣和偏移量校準(zhǔn)功能的 ADC,可簡(jiǎn)化軟件設(shè)計(jì),從而使 MCU 具有更高的周期效率,并能夠更快運(yùn)行控制環(huán)路。
另一個(gè)挑戰(zhàn)是對(duì)具有不同實(shí)時(shí)限制的多個(gè)任務(wù)進(jìn)行軟件集成:PFC、DC/DC 以及輔助控制和安全性需要共存,這讓軟件開發(fā)變得更加復(fù)雜。
從單核 MCU 轉(zhuǎn)向多核 MCU 架構(gòu)并在 MCU 內(nèi)核之間分配存儲(chǔ)器、PWM 和模擬資源,可幫助實(shí)現(xiàn)向多個(gè)內(nèi)核分配不同的控制環(huán)路頻率,例如,一個(gè)內(nèi)核用于控制 PFC,另一個(gè)用于運(yùn)行兩個(gè) CLLLC。每個(gè)內(nèi)核以不同的獨(dú)立頻率運(yùn)行控制環(huán)路:圖騰柱通常為固定頻率,但車載充電器的直流/直流電源轉(zhuǎn)換級(jí)(圖 3)不斷變化。使用多核架構(gòu)還有助于實(shí)現(xiàn)更可靠、更精密的過流和過壓保護(hù)(因?yàn)榭梢葬槍?duì)每個(gè)內(nèi)核優(yōu)化每個(gè)控制環(huán)路),無需外部監(jiān)控元件,還可以降低成本。
電動(dòng)汽車將在數(shù)分鐘內(nèi)充滿電,每個(gè)家庭都將使用光伏和儲(chǔ)能系統(tǒng),工廠將使用更多高效的機(jī)器人并實(shí)現(xiàn)能源足跡更少的自動(dòng)化……實(shí)時(shí)控制 MCU 的創(chuàng)新將為實(shí)現(xiàn)更清潔、更安全、更高效的世界鋪平道路。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
利用MPS電源模塊賦能光模塊驅(qū)動(dòng)數(shù)據(jù)流量
默克中國(guó)總裁安高博:AI讓顯示設(shè)備更沉浸更互動(dòng)