【導(dǎo)讀】因續(xù)航能力有限而導(dǎo)致的“里程焦慮”是許多消費(fèi)者采用電動(dòng)車(chē)的一個(gè)障礙。增加電池密度和提高能量轉(zhuǎn)換過(guò)程的效率是延長(zhǎng)車(chē)輛續(xù)航能力以緩解這種焦慮的關(guān)鍵。能效至關(guān)重要的一個(gè)關(guān)鍵領(lǐng)域是主驅(qū)逆變器,它將直流電池電壓轉(zhuǎn)換為所需的交流驅(qū)動(dòng),以為電機(jī)供電。
在這篇技術(shù)文章中,我們討論VE-Trac? IGBT和碳化硅(SiC)模塊如何賦能更高的電池密度并提供更高效的轉(zhuǎn)換過(guò)程,以延長(zhǎng)電動(dòng)車(chē)的續(xù)航能力,從而幫助克服消費(fèi)者的擔(dān)憂。
主驅(qū)逆變器是電動(dòng)車(chē)的核心,連接電池和主驅(qū)電機(jī)。它們將直流電池電壓轉(zhuǎn)換為電機(jī)所需的交流驅(qū)動(dòng),功率水平通常為80千瓦至150多千瓦。電池電壓基于電池組的大小,通常在400 V直流電壓范圍內(nèi),但800 V直流電壓正越來(lái)越普遍,以顯著減小電流,從而降低損耗。
雖然鋰離子(Li-Ion)電池成本在過(guò)去三年中降低了40%,或在過(guò)去十年中降低了90%,但它仍是電動(dòng)車(chē)中最高的成本項(xiàng)。降價(jià)的軌跡預(yù)計(jì)將持續(xù)到2025年左右,屆時(shí)價(jià)格將趨于穩(wěn)定。鑒于這項(xiàng)成本,當(dāng)務(wù)之急是盡可能有效地利用每一焦耳的存儲(chǔ)能量,以減小電池組的成本和尺寸。
這種電力驅(qū)動(dòng)提供極高的扭矩和加速度。逆變器和電動(dòng)馬達(dá)組合的反應(yīng)能力直接關(guān)系到車(chē)輛的“感知”,因而也關(guān)系到消費(fèi)者的駕駛體驗(yàn)和滿意度。
開(kāi)關(guān)器件的作用
主驅(qū)逆變器通常含三個(gè)半橋元件,每個(gè)半橋元件由一對(duì)MOSFET或IGBT組成,稱為上橋和下橋開(kāi)關(guān)。每個(gè)電機(jī)相位都有一個(gè)半橋,總共有三個(gè),由柵極驅(qū)動(dòng)器控制每個(gè)開(kāi)關(guān)器件。
圖1:主驅(qū)逆變器概覽
開(kāi)關(guān)的主要作用是打開(kāi)和關(guān)斷來(lái)自高壓電池的直流電壓和電流,為推動(dòng)車(chē)輛的電機(jī)提供交流驅(qū)動(dòng)。這是個(gè)要求很高的應(yīng)用,因?yàn)樗ぷ髟诟唠妷骸⒏唠娏骱透吖ぷ鳒囟葪l件,而800 V電池可提供超過(guò)200千瓦的功率。
基于400 V電池系統(tǒng)的主驅(qū)逆變器要求功率半導(dǎo)體器件的VDS額定值在650 V至750 V之間,而800 V方案將VDS額定值要求提高到1200 V。在一個(gè)典型的應(yīng)用中,這些功率器件還必須處理持續(xù)時(shí)間長(zhǎng)達(dá)30秒(s)的超過(guò)600 A的峰值交流電流,以及持續(xù)約1毫秒(ms)的最大交流電流1600 A。
此外,開(kāi)關(guān)晶體管和用于該器件的柵極驅(qū)動(dòng)器必須能夠處理這些大的負(fù)載,同時(shí)使主驅(qū)逆變器保持高能效。
IGBT一直是主驅(qū)逆變器應(yīng)用的首選器件,因?yàn)樗鼈兛梢蕴幚砀唠妷?,快速開(kāi)關(guān),帶來(lái)高能效的工作,并滿足汽車(chē)行業(yè)具挑戰(zhàn)性的成本目標(biāo)。
開(kāi)關(guān)和功率密度
現(xiàn)代汽車(chē)極為擁擠——至少含技術(shù)的空間是如此。這說(shuō)明功率密度是個(gè)重要參數(shù),動(dòng)力總成的功率密度尤為重要。物理尺寸(和重量)必須最小化,因?yàn)槿魏沃亓慷紩?huì)導(dǎo)致車(chē)輛續(xù)航能力降低。
除了元器件的物理尺寸外,設(shè)計(jì)的能效也是主要的驅(qū)動(dòng)因素。能效越高,產(chǎn)生的熱量就越少,逆變器的結(jié)構(gòu)就越緊湊。
開(kāi)關(guān)(無(wú)論是IGBT還是MOSFET)對(duì)產(chǎn)生熱量的損耗有最重要的影響。較低的導(dǎo)通電阻(RDS(ON))值可減少靜態(tài)損耗,而柵極電荷(Qg)的改進(jìn)可減少動(dòng)態(tài)或開(kāi)關(guān)損耗,使系統(tǒng)的開(kāi)關(guān)速度加快。如果開(kāi)關(guān)速度更快,那么就可以大大減小磁鐵等無(wú)源元件的尺寸,從而提高功率密度。
開(kāi)關(guān)的最高工作溫度也會(huì)影響功率密度,因?yàn)槿绻骷茉诟叩臏囟认鹿ぷ?,需要的冷卻就更少,從而進(jìn)一步減少設(shè)計(jì)的尺寸和重量。
模塊化方案增加功率密度
在許多主驅(qū)逆變器的設(shè)計(jì)中,關(guān)鍵器件通常是單獨(dú)的分立封裝,雖然這是個(gè)非常有效的方法,但它不一定能提供最緊湊或最高功率密度的設(shè)計(jì)。
另一種方法是使用預(yù)配置的模塊來(lái)構(gòu)成主驅(qū)逆變器所需的半橋。安森美(onsemi)的VE-Trac功率集成模塊(PIM)就是這樣一種方案,它專(zhuān)用于汽車(chē)功能電子化應(yīng)用,包括逆變器。
VE-Trac Dual電源模塊在一個(gè)半橋架構(gòu)中集成了一對(duì)1200 V超場(chǎng)截止(UFS)IGBT。這些器件采用了穩(wěn)定可靠且經(jīng)過(guò)驗(yàn)證的溝槽(Trench) UFS IGBT技術(shù),提供高電流密度、穩(wěn)定可靠的短路保護(hù)以及800 V電池應(yīng)用所需的更高阻斷電壓。該智能IGBT集成了電流和溫度傳感器,使其具有獨(dú)特的優(yōu)勢(shì),并對(duì)過(guò)電流(OCP)和過(guò)溫度等保護(hù)功能提供更快的反應(yīng)時(shí)間,從而提供一個(gè)更穩(wěn)定可靠的方案。
這些芯片被封裝好,安裝在具有4.2 kV(基本)絕緣能力的Al2O3覆銅基板(DBC substrate),兩側(cè)都有銅和冷卻性能。沒(méi)有線邦定的模塊比含有線邦定的類(lèi)似外殼模塊預(yù)期壽命增加一倍。將該IGBT和一個(gè)二極管共同封裝,可以減少功率損耗和實(shí)現(xiàn)軟開(kāi)關(guān),從而提高整體能效。
VE-Trac Dual模塊將裸芯片封裝在一個(gè)小巧的尺寸中,更易于集成到緊湊的設(shè)計(jì)中。高效的工作、低損耗和雙面水冷確保輕松實(shí)現(xiàn)熱管理,同時(shí)持續(xù)工作在175°C允許向牽引電機(jī)提供更高的峰值功率。
主驅(qū)逆變器的每一相通常需要一個(gè)VE-Trac Dual模塊,其機(jī)械設(shè)計(jì)本身可用于多相應(yīng)用,提供簡(jiǎn)單的可擴(kuò)展性,包括將模塊并聯(lián)以在每個(gè)單相提供更多的功率。
雖然基于IGBT的VE-Trac模塊足以滿足大多數(shù)汽車(chē)應(yīng)用的要求,但基于SiC MOSFET的增強(qiáng)版也可用于最高要求的應(yīng)用。這款產(chǎn)品采用了最新的寬禁帶(WBG)技術(shù),進(jìn)一步減小主驅(qū)逆變器設(shè)計(jì)的尺寸并提高能效。
總結(jié)
讓電動(dòng)車(chē)在兩次充電之間行駛得更遠(yuǎn)是我們當(dāng)前的一大技術(shù)挑戰(zhàn)。由于政府要求,且人們期望改善環(huán)境,這些車(chē)輛將在未來(lái)幾年內(nèi)被迅速采用。
如果減輕消費(fèi)者的“續(xù)航里程焦慮”,電動(dòng)車(chē)會(huì)更有吸引力,那么采用的速度會(huì)更快。實(shí)現(xiàn)這的最佳途徑是提高能效,這不僅延長(zhǎng)續(xù)航里程,還增加功率密度和提升可靠性。
半導(dǎo)體開(kāi)關(guān)是實(shí)現(xiàn)高能效的關(guān)鍵,雖然分立器件具有出色的性能,但最好的方案是專(zhuān)為汽車(chē)應(yīng)用而設(shè)計(jì)的PIM,如安森美的VE-Trac模塊。這些基于IGBT的設(shè)計(jì)提供所需的高能效、高性能和可擴(kuò)展性,外形小巧,簡(jiǎn)化了熱設(shè)計(jì)。
作者:安森美高級(jí)產(chǎn)品線經(jīng)理Jonathan Liao
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
如何加強(qiáng)對(duì)Type-C數(shù)據(jù)線的充電保護(hù)?
以太網(wǎng)供電實(shí)現(xiàn)LED照明應(yīng)用
自動(dòng)駕駛汽車(chē)的未來(lái)趨勢(shì):集中式傳感器融合