【導(dǎo)讀】變頻器在設(shè)計上不斷的推陳出新,為了提高功率密度并降低成本,工程師更是絞盡腦汁。IGBT(絕緣柵型雙極性晶體管)在變頻器里屬于關(guān)鍵器件,其選型和損耗直接關(guān)系散熱器的大小,也直接影響著系統(tǒng)的性能、成本和尺寸。
本文從變頻器的應(yīng)用特點出發(fā),結(jié)合第七代IGBT的低飽和壓降和最大運行結(jié)溫等特點,介紹了第七代IGBT如何助力變頻器應(yīng)用。
本文通過分析變頻器的損耗組成,并通過熱仿真對比第四代IGBT和第七代IGBT的性能,最后通過實驗來驗證結(jié)論。相同工況下IGBT7損耗和結(jié)溫明顯低于IGBT4,這樣可以減小變頻器的體積或是保持相同體積下增大輸出電流,實現(xiàn)功率跳檔,從而提高產(chǎn)品的功率密度。
01 引言
電機在家電、傳動、交通運輸、新能源和工業(yè)機器人等行業(yè)有著非常廣泛的應(yīng)用。電機驅(qū)動著我們?nèi)粘5墓ぷ骱蛫蕵?。低壓變頻器作為驅(qū)動電機的主要產(chǎn)品,因調(diào)速范圍廣、操作簡單,能夠?qū)崿F(xiàn)節(jié)能、軟起、提效等功能,應(yīng)用非常廣泛,如電梯、風(fēng)機、水泵、紡織、冶金等行業(yè)。
2021年是“十四五”規(guī)劃開局之年,中國敲定了碳中和的路線圖,力爭在2030年前達(dá)到二氧化碳排放峰值,2060年前實現(xiàn)碳中和。目前中國制造業(yè)正在開展新一輪轉(zhuǎn)型升級,這對工業(yè)設(shè)備的性能提出了更高的要求,節(jié)能、綠色驅(qū)動的方式將成為主流,這又將推動變頻器市場的增長,尤其是新一代更高功率密度的產(chǎn)品。
低壓通用變頻器市場競爭非常激烈,針對目前的市場需求,主要廠商加大研發(fā)投入降低產(chǎn)品成本、提升產(chǎn)品性能。而變頻器電路拓?fù)渲饕捎媒?直-交變頻,電路拓?fù)涔潭?,且發(fā)展相對緩慢。變頻器產(chǎn)品的發(fā)展特點在硬件上就集中體現(xiàn)為減小尺寸、提高功率密度從而降低成本。
從硬件角度講,低壓通用變頻器的特點主要有:
● 交-直-交:不控制整流+制動單元+三相逆變;
● 低開關(guān)頻率:額定4KHz~6kHz,如提高開關(guān)頻率會降額;
● 短時過載需求:150%過載/1分鐘;
針對通用變頻器的這些應(yīng)用特點,英飛凌公司推出了第七代IGBT模塊。那么第七代IGBT模塊對比目前市場主要使用的第四代的IGBT模塊在變頻器應(yīng)用中的優(yōu)勢體現(xiàn)在哪里呢?是如何做到提高功率密度的?本文將通過仿真和實驗來探究。
02 IGBT7芯片技術(shù)
目前IGBT芯片技術(shù)已經(jīng)發(fā)展到第七代的水平,以英飛凌的IGBT的芯片技術(shù)為例,從最開始的PT技術(shù),到NPT平面柵,再到溝槽柵,現(xiàn)在到了第七代,也就是微溝槽柵(簡稱MPT,下同)技術(shù)。IGBT7采用了基于MPT的IGBT結(jié)構(gòu)。在n-襯底的底部,通過p+摻雜實現(xiàn)了集電極區(qū)。在n-襯底和和p+之間,通過n+摻雜實現(xiàn)了場截止(FS)結(jié)構(gòu)。它可以使電場急劇下降,同時會影響器件的靜態(tài)和動態(tài)特性。
與IGBT4相區(qū)別的是,IGBT7里的溝槽除了包含常見的有緣柵極,還有發(fā)射極溝槽和偽柵極,后兩種溝槽是無效溝槽。這三種溝槽單元類型能夠精細(xì)化定制IGBT。通過增加有源柵極密度,能夠增加單位芯片面積上的導(dǎo)電溝道。一方面,由于器件輸出特性曲線更陡,可降低靜態(tài)損耗[1][2] [3]。當(dāng)然,帶來的影響還有柵極-發(fā)射極電容(CGE)增加,代表著其開關(guān)參數(shù)也發(fā)生了變化。
圖1.英飛凌芯片技術(shù)
到具體應(yīng)用層面,IGBT7的優(yōu)勢總結(jié)為:
● 更低的導(dǎo)通飽和壓降Vcesat;
● 最高短時工作結(jié)溫可以到175℃;
● 針對電機驅(qū)動類應(yīng)用的dv/dt特性優(yōu)化;
03 IGBT7技術(shù)應(yīng)用在變頻器
IGBT7設(shè)計的初衷是針對電機驅(qū)動的應(yīng)用。通過減少功率器件的總損耗和提高過載條件下的最高結(jié)溫到175℃來提高功率密度、減少系統(tǒng)尺寸最終達(dá)到降低系統(tǒng)成本的目的。為什么IGBT7適合變頻器應(yīng)用呢?
1. 變頻器應(yīng)用中,一般情況下,額定開關(guān)頻率范圍4KHz~6KHz。在此工況下,總損耗中導(dǎo)通損耗占比最大。IGBT7通過降低Vcesat來減少導(dǎo)通損耗。從而達(dá)到降低總損耗的目的;
2. IGBT7支持最高175℃的運行結(jié)溫,有效滿足變頻器過載的需求;
3. IGBT7 PIM模塊集成有整流橋、制動單元和逆變橋,為變頻器量身定做。
接下來,結(jié)合5.5KW變頻器,通過仿真和實驗來驗證IGBT7在變頻器應(yīng)用中的優(yōu)勢。
首先我們可以通過仿真來評估IGBT7在變頻器應(yīng)用中的結(jié)溫和損耗分布。PLECS涉及到電能轉(zhuǎn)換系統(tǒng)的電氣回路,磁性元件,散熱回路和機械以及其控制部分可以提供快速的仿真。本文使用Icepak和PLECS混合熱仿真實驗,并計算損耗和結(jié)溫。
圖2.仿真和實驗流程圖
3.1 建立PLECS器件模型
(1)雙脈沖測試
雖然器件規(guī)格書上會有開關(guān)損耗的數(shù)據(jù),但是母線電壓、結(jié)溫、主功率回路的雜散電感、門極回路的寄生電感和寄生電阻都會對開關(guān)損耗產(chǎn)生影響[4]。通過雙脈沖測試可以得到IGBT7的開關(guān)損耗和二極管的反向恢復(fù)損耗。當(dāng)然還可以得到各電壓電流尖峰值,斜率變化值在內(nèi)的動態(tài)參數(shù)。本次實驗直接在整機的主功率電路板上做雙脈沖測試,這樣測得的數(shù)據(jù)更加符合實際。
本次測試選取了室溫、35℃、75℃和125℃這四種不同的溫度,得到IGBT7的關(guān)斷損耗和開通損耗。因第七代IGBT使用了MPT技術(shù),在維持較低dv/dt的情況下,驅(qū)動電阻可以選的更小[5],所以本次雙脈沖測試驅(qū)動電阻(Rg)選取10歐姆和15歐姆,如圖3和圖4所示。
圖3.Rg=15Ω時IGBT7關(guān)斷損耗實測數(shù)據(jù)
圖4.Rg=15Ω時IGBT7開通損耗實測數(shù)據(jù)
(2)創(chuàng)建器件模型
基于規(guī)格書的數(shù)據(jù),將Vcesat與Ic(集電極電流)的輸出特性曲線導(dǎo)入到PLECS器件模型里,再加上之前得到的開關(guān)損耗,就可以得到IGBT和反并聯(lián)二極管的損耗模型。最后輸入四階的瞬態(tài)熱阻,就可以得到IGBT7的PLECS熱模型了,如圖5所示。
圖5.IGBT7器件模型
3.2 3D和PLECS聯(lián)合熱仿真結(jié)果
采用3D和PLECS聯(lián)合熱仿真的目的是提高仿真結(jié)果的精度。IGBT和二極管芯片產(chǎn)生的絕大部分的熱量通過圖6中縱向的熱阻傳遞到環(huán)境中;只有極少部分的熱量橫向傳遞,在本文中可以忽略不計。從熱等效網(wǎng)絡(luò)可見,Rth,c-h(散熱器熱阻,下同)的精度直接影響到IGBT芯片結(jié)溫的估算。PLECS的優(yōu)勢是可以通過仿真得到損耗和芯片結(jié)溫,而3D熱仿真的優(yōu)勢是可以得到散熱器熱阻值。采用3D和PLECS聯(lián)合熱仿真的目的是提高仿真結(jié)果的精度。
圖6.IGBT熱等效網(wǎng)絡(luò)
基于第七代IGBT FP25R12W2T7,使用PLECS仿真計算出損耗后,導(dǎo)入到3D熱仿真可以得到散熱器的熱阻,再將散熱器熱阻導(dǎo)入到PLECS迭代后重新仿真,可以得到IGBT和二極管的晶圓的結(jié)溫,具體結(jié)果請參見表1。表1和表2中“仿真模式”一列中的熱阻指的是散熱器熱阻Rth,c-h。
仿真條件如下:
● 母線電壓Vdc=540V;
● 調(diào)制比為1;
● 輸出頻率為50Hz;
● 散熱器的時間常數(shù)為67s;
● 輸出功率因數(shù)為0.85;
表1.IGBT7熱仿真結(jié)果
接著再用相同的方法,針對25A的第四代IGBT FP25R12W2T4做仿真,得到其損耗。如下表2所示:
表2.IGBT4的熱仿真結(jié)果
以上仿真均按照實際運行工況的運行參數(shù),從仿真結(jié)果對比來看,相同工況下IGBT7的損耗明顯低于IGBT4;并且隨著電流的增加或開關(guān)頻率的增加,損耗的差距越大,如表3所示。
表3.熱仿真損耗對比
04 IGBT7和IGBT4
在變頻器應(yīng)用中的性能對比
4.1 實驗平臺搭建
本文選用偉創(chuàng)AC310系列5.5KW變頻器搭建測試平臺。IGBT模塊分別使用經(jīng)過特殊處理的芯片粘有熱電偶的第七代25A 的FP25R12W2T7和第四代同樣是25A的FP25R12W2T4。因為兩個模塊是同封裝同引腳,所以可以在相同的機器上測試;再加上這兩個模塊所粘溫升線的芯片的位置相同,可以直接讀出相同位置芯片上的結(jié)溫,這樣方便直接對比IGBT4和IGBT7的芯片結(jié)溫。
圖7.芯片粘有溫升線的IGBT模塊
對散熱器進(jìn)行打孔處理,分別在U相下橋IGBT、V相上橋二極管和整流橋二極管正下方打孔,將熱電偶深入孔中,緊貼散熱器基板側(cè)面并與散熱器表面齊平,用來測量散熱器的溫度。
圖8.打孔散熱器
4.2 實驗結(jié)果
對應(yīng)前文的仿真,在溫升測試中仍然按照這四個工況測試:13A/2kHz、13A/4kHz、13A/6kHz和17A/2kHz。分別監(jiān)測并記錄:IGBT芯片的結(jié)溫、U相下橋IGBT芯片正下方散熱器溫度,V相上橋二極管芯片正下方散熱器溫度和整流橋二極管芯片正下方散熱器溫度;監(jiān)測記錄輸入電流;監(jiān)測輸出電流。記錄并對比實驗結(jié)果,如表4所示。
表4.IGBT7與IGBT4的熱測試對比
4.3 實驗結(jié)果分析
實驗結(jié)果顯示,IGBT7的芯片結(jié)溫在相同工況下明顯低于IGBT4;并且隨著輸出電流的增大,IGBT7和IGBT4的溫升的差值在增加。從實驗結(jié)果中還可以看到,隨著開關(guān)頻率的提高,IGBT7與IGBT4溫升的差值也越來越大,這是因為目前工程師在使用IGBT4時,往往取的驅(qū)動電阻值較大,這一點從IGBT4的仿真結(jié)果就可以看出是一致的。
4.4 實驗誤差分析
本次實驗兩個模塊同為熱電偶模塊,并且使用相同散熱器。測試最終結(jié)果為其溫升的差異,是相對值,這符合單變量原則。
但考慮到本次測試T7和T4模塊都有內(nèi)置熱電偶,這是與標(biāo)準(zhǔn)模塊的一個不同點;再加上散熱器打孔,會增大散熱器的熱阻。這兩點對于實驗得出溫度的絕對值的差異需要得到進(jìn)一步探究。
設(shè)計如下兩組實驗來探究以上兩點對溫升絕對值的影響。
第一組:使用相同模塊,不同散熱器
表5.散熱器誤差對比測試
第二組:使用相同散熱器,不同的模塊
表6.模塊誤差對比測試
兩組測試反應(yīng)出隨著工況的惡劣程度的加深,誤差越大。這也解釋了為什么隨著損耗的增加,仿真得到的IGBT結(jié)溫Tvj與實測得到的熱電偶溫度之間的差值越來越大。
4.5 設(shè)計總結(jié)
目前5.5KW變頻器一般使用的是第四代35A IGBT模塊如英飛凌的FP35R12W2T4,或類似電流等級和封裝的其它模塊。根據(jù)以上仿真和實驗的驗證,IGBT7可以從兩個思路幫助變頻器提高功率密度:其一,5.5KW變頻器將模塊更換為第七代同封裝35A的IGBT模塊,可以直接將5.5KW的變頻器功率提到到7.5KW并保持整機尺寸不變,從而提高整機功率密度,相當(dāng)于將功率密度提高40%~70%,如圖9所示;其二,5.5KW變頻器將第四代35A的Easy2B IGBT模塊更換為體積更小的第七代25A的Easy1B模塊,可以直接將變頻器的外形尺寸降低25%~40%。
圖9.IGBT7助力變頻器功率跳檔
05 結(jié)論
通過一系列仿真和測試,可以明顯的看到英飛凌第七代IGBT通過降低Vcesat來降低逆變器總損耗和降低芯片結(jié)溫,在再加上可以做到最高到175℃的運行結(jié)溫,這些給工程師帶來了很大的設(shè)計裕量,從而助力變頻器功率跳檔。既可以通過減小變頻器的尺寸,提高功率密度,降低成本;也可以保持原有變頻器體積不變,增大輸出電流,功率跳檔從而達(dá)到提高功率密度、降低成本的目標(biāo)。
參考文獻(xiàn)
[1] Infineon AN2018-14 TRENCHSTOP? 1200 V IGBT7 Application Note
[2] C. R. Mueller., “New 1200 V IGBT and Diode Technology with Improved Controllability for Superior Performance in Drives Application”, PCIM Europe, Nuremberg, Germany, 2018
[3] 論文|1200V IGBT7和Emcon7可控性更佳,助力提升變頻器系統(tǒng)性能(上)?2019年2月19日
[4] 英飛凌工業(yè)半導(dǎo)體 雙脈沖測試基礎(chǔ)系列:為什么我測的損耗和規(guī)格書不一樣?2021年4月22日
[5] 英飛凌工業(yè)半導(dǎo)體 突破—IGBT7的高功率密度設(shè)計實例, 2020年5月13日
[6] 偉創(chuàng)變頻器官網(wǎng) https://www.veichi.com/
來源:英飛凌,原創(chuàng):趙愷,陳慧凱,張浩等
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
25kW SiC直流快充設(shè)計指南(第八部分完結(jié)篇):熱管理