新型功率開關(guān)技術(shù)和隔離式柵極驅(qū)動(dòng)器不斷變化的格局
發(fā)布時(shí)間:2020-08-04 來源:Maurice Moroney 責(zé)任編輯:wenwei
【導(dǎo)讀】基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關(guān)技術(shù)的出現(xiàn)促使性能大幅提升,超越了基于MOSFET和IGBT技術(shù)的傳統(tǒng)系統(tǒng)。更高的開關(guān)頻率將減小元件尺寸,從而減小成本、系統(tǒng)尺寸和重量;這些是汽車和能源等市場(chǎng)中的主要優(yōu)勢(shì)。新型功率開關(guān)還將促使其控制元件發(fā)生變化,其中包括柵極驅(qū)動(dòng)器。本文將探討GaN和SiC開關(guān)與IGBT/MOSFET的一些主要差異,以及柵極驅(qū)動(dòng)器將如何為這些差異提供支持。
多年來,功率輸出系統(tǒng)的功率開關(guān)技術(shù)選擇一直非常簡(jiǎn)單。在 低電壓水平(通常為600 V以下),通常會(huì)選擇MOSFET;在高電壓 水平,通常會(huì)更多地選擇IGBT。隨著氮化鎵和碳化硅形式的新 型功率開關(guān)技術(shù)的出現(xiàn),這種情況正面臨威脅。
這些新型開關(guān)技術(shù)在性能方面具有多項(xiàng)明顯優(yōu)勢(shì)。更高的開關(guān) 頻率可減小系統(tǒng)尺寸和重量,這對(duì)太陽能面板等能源應(yīng)用中使 用的光伏逆變器以及汽車等目標(biāo)市場(chǎng)非常重要。開關(guān)速度從 20 kHz提高至100 kHz可大幅減小變壓器重量,從而使電動(dòng)汽車的 電機(jī)更輕,而且還能擴(kuò)大太陽能應(yīng)用中所用的逆變器的范圍, 減小其尺寸,從而使其更適合國(guó)內(nèi)應(yīng)用。另外,更高的工作溫 度(尤其是GaN器件)和更低的開啟驅(qū)動(dòng)要求還可簡(jiǎn)化系統(tǒng)架構(gòu)師 的設(shè)計(jì)工作。
與MOSFET/IGBT一樣,這些新技術(shù)(至少在初始階段)看起來能夠 滿足不同的應(yīng)用需求。直到最近,GaN產(chǎn)品通常還處于200 V范圍 內(nèi),盡管近年來這些產(chǎn)品已經(jīng)飛速發(fā)展,并且出現(xiàn)了多種600 V 范圍內(nèi)的產(chǎn)品。但這仍然遠(yuǎn)不及SiC的主要范圍(接近1000 V),這 表明,GaN已自然而然地取代了MOSFET器件,而SiC則取代了 IGBT器件。既然超結(jié)MOSFET能夠跨越此鴻溝并實(shí)現(xiàn)最高達(dá)900 V 的高電壓應(yīng)用,一些GaN研發(fā)開始提供能夠應(yīng)對(duì)電壓在600 V以上 的應(yīng)用的器件,這完全不足為奇。
然而,雖然這些優(yōu)勢(shì)使得GaN和SiC功率開關(guān)對(duì)設(shè)計(jì)人員極具吸 引力,但這種好處并非毫無代價(jià)。最主要的代價(jià)是成本提高, 這種器件的價(jià)格比同等MOSFET/IGBT產(chǎn)品高出好幾倍。IGBT和 MOSFET生產(chǎn)是一種發(fā)展良好且極易掌握的過程,這意味著與其 新對(duì)手相比,其成本更低、價(jià)格競(jìng)爭(zhēng)力更高。目前,與其傳統(tǒng) 對(duì)手相比,SiC和GaN器件的價(jià)格仍然高出數(shù)倍,但其價(jià)格競(jìng)爭(zhēng) 力正在不斷提高。許多專家和市場(chǎng)調(diào)查報(bào)告已經(jīng)表明,必須在 廣泛應(yīng)用前大幅縮小價(jià)格差距。即使縮小了價(jià)格差距,新型功 率開關(guān)也不太可能立即實(shí)現(xiàn)大規(guī)模應(yīng)用,甚至從長(zhǎng)期預(yù)測(cè)來 看,傳統(tǒng)開關(guān)技術(shù)也仍將在未來一段時(shí)間內(nèi)繼續(xù)占據(jù)大部分 市場(chǎng)。
除純成本和財(cái)務(wù)因素外,技術(shù)因素也會(huì)有一些影響。更高的開 關(guān)速度和工作溫度可能非常適合GaN/SiC開關(guān),但是它們?nèi)匀粫?huì) 為完成功率轉(zhuǎn)換信號(hào)鏈所需的周邊IC支持器件帶來問題。隔離 系統(tǒng)的一種典型信號(hào)鏈如圖1所示。雖然更高的開關(guān)速度會(huì)對(duì) 控制轉(zhuǎn)換的處理器和提供反饋回路的電流檢測(cè)系統(tǒng)產(chǎn)生影響, 但本文的其余部分將重點(diǎn)討論為功率開關(guān)提供控制信號(hào)的柵極 驅(qū)動(dòng)器所遇到的變化。
圖1. 典型功率轉(zhuǎn)換信號(hào)鏈
GaN/SiC柵極驅(qū)動(dòng)器
柵極驅(qū)動(dòng)器可接收系統(tǒng)控制過程產(chǎn)生的邏輯電平控制信號(hào),并 提供驅(qū)動(dòng)功率開關(guān)柵極所需的驅(qū)動(dòng)信號(hào)。在隔離系統(tǒng)中,它們 還可實(shí)現(xiàn)隔離,將系統(tǒng)帶電側(cè)的高電壓信號(hào)與在安全側(cè)的用戶 和敏感低電壓電路分離。為了充分利用GaN/SiC技術(shù)能夠提供更 高開關(guān)頻率的功能,柵極驅(qū)動(dòng)器必須提高其控制信號(hào)的頻率。 當(dāng)前的基于IGBT的系統(tǒng)可能在數(shù)十kHz范圍內(nèi)切換;新出現(xiàn)的要 求表明,可能需要數(shù)百kHz、甚至是一至兩MHz的開關(guān)頻率。這 會(huì)對(duì)系統(tǒng)設(shè)計(jì)人員產(chǎn)生困擾,因?yàn)樗麄冊(cè)噲D消除從柵極驅(qū)動(dòng)器 到功率開關(guān)之間的信號(hào)路徑中的電感。最大限度縮短走線長(zhǎng)度 以避免走線電感將非常關(guān)鍵,柵極驅(qū)動(dòng)器和功率開關(guān)的靠近布 局可能會(huì)成為標(biāo)準(zhǔn)做法。GaN供應(yīng)商提供的推薦布局指南的絕 大部分都強(qiáng)調(diào)了低阻抗走線和平面的重要性。此外,使用者將 希望功率開關(guān)和支持IC供應(yīng)商能夠解決封裝和金線引起的各種 問題。
SiC/GaN開關(guān)提供的更高工作溫度范圍也對(duì)系統(tǒng)設(shè)計(jì)人員極具吸 引力,因?yàn)檫@能夠讓他們更自由地提升性能,而不必?fù)?dān)心散熱 問題。雖然功率開關(guān)將在更高溫度下工作,但其周圍的硅類元 件仍然會(huì)遇到常規(guī)的溫度限制。由于必須將驅(qū)動(dòng)器放置在開關(guān) 旁邊,希望充分利用新開關(guān)的更高工作范圍的設(shè)計(jì)人員正面臨 著一個(gè)問題,即溫度不能超過硅類元件溫度極限。
圖2. 典型柵極驅(qū)動(dòng)器的傳播延遲和CMTI性能
更高的開關(guān)頻率還會(huì)產(chǎn)生共模瞬變抗擾性問題,這對(duì)系統(tǒng)設(shè)計(jì) 人員來說是一個(gè)非常嚴(yán)重的問題。在隔離式柵極驅(qū)動(dòng)器中的 隔離柵上耦合的高壓擺率信號(hào)可能破壞數(shù)據(jù)傳輸,導(dǎo)致輸出 端出現(xiàn)不必要的信號(hào)。在傳統(tǒng)的基于IGBT的系統(tǒng)中,抗擾度介 于20 kV/μs和30 kV/μs之間的柵極驅(qū)動(dòng)器足以抵抗共模干擾。但 是,GaN器件往往具有超過這種限制的壓擺率,為魯棒系統(tǒng)選 擇柵極驅(qū)動(dòng)器,其共模瞬變抗擾度至少應(yīng)為100 kV/μs。最近推 出的產(chǎn)品,例如ADuM4135采用了ADI公司的iCoupler®技術(shù),提供最高達(dá)100 kV/μs的共模瞬變抗擾度,能夠應(yīng)對(duì)此類應(yīng)用。但 是,提高CMTI性能往往會(huì)產(chǎn)生額外的延遲。延遲增加意味著高 端和低端開關(guān)之間的死區(qū)時(shí)間增加,這會(huì)降低性能。在隔離式 柵極驅(qū)動(dòng)器領(lǐng)域尤其如此,因?yàn)樵诖祟愵I(lǐng)域中,信號(hào)在隔離柵 上傳輸,一般具有更長(zhǎng)時(shí)間的延遲。但是,ADuM4135不僅提供 100 kV/μs CMTI,而且其傳播延遲僅為50 ns。
當(dāng)然,對(duì)于承擔(dān)推動(dòng)新型功率開關(guān)技術(shù)向前發(fā)展這一任務(wù)的柵 極驅(qū)動(dòng)器,并非完全是壞消息。典型IGBT的柵極充電電荷高達(dá) 數(shù)百nC,因此,我們通常會(huì)發(fā)現(xiàn)柵極驅(qū)動(dòng)器在2 A至6 A范圍內(nèi)提 供輸出驅(qū)動(dòng)能力。目前,市場(chǎng)上提供的GaN開關(guān)的柵極充電電 荷性能提升了10倍以上,通常處于5 nC至7 nC范圍內(nèi),因此,柵 極驅(qū)動(dòng)器的驅(qū)動(dòng)要求已顯著降低。降低柵極驅(qū)動(dòng)器的驅(qū)動(dòng)要求 可使柵極驅(qū)動(dòng)器尺寸更小、速度更快,而且還能減少添加外部 緩沖器以增強(qiáng)電流輸出的需求,從而能夠節(jié)約空間和成本。
結(jié)論
人們很早以前就預(yù)測(cè)到,GaN和SiC器件將成為功率轉(zhuǎn)換應(yīng)用中 的新型解決方案,這種技術(shù)人們期待已久,現(xiàn)在終于得以實(shí) 現(xiàn)。雖然這種技術(shù)能夠提供極具吸引力的優(yōu)勢(shì),但它們并非沒 有代價(jià)。為了提供出色性能,新型開關(guān)技術(shù)需要更改所用隔離 式柵極驅(qū)動(dòng)器的要求,并且會(huì)為系統(tǒng)設(shè)計(jì)人員帶來新的問題。 優(yōu)勢(shì)很明顯,并且也已經(jīng)出現(xiàn)了多種解決這些問題的方案。而 且,市場(chǎng)上已經(jīng)有現(xiàn)成且可行的GaN和SiC解決方案。
推薦閱讀:
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長(zhǎng)
- 上海國(guó)際嵌入式展暨大會(huì)(embedded world China )與多家國(guó)際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲(chǔ)器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro