對(duì)于小功率AC/DC轉(zhuǎn)換,倒置降壓的優(yōu)勢(shì)在哪?
發(fā)布時(shí)間:2020-04-01 責(zé)任編輯:lina
【導(dǎo)讀】對(duì)于離線電源來(lái)說(shuō),反激拓?fù)涫且环N合理的解決方案。但是,如果設(shè)計(jì)的終端應(yīng)用不需要隔離,那么與之相比,離線倒置降壓拓?fù)渚哂懈叩男剩⑶?BOM 數(shù)量更少。這篇電源設(shè)計(jì)的文章,將會(huì)探討倒置降壓對(duì)于小功率 AC/DC 轉(zhuǎn)換的優(yōu)勢(shì)。
對(duì)于離線電源來(lái)說(shuō),反激拓?fù)涫且环N合理的解決方案。但是,如果設(shè)計(jì)的終端應(yīng)用不需要隔離,那么與之相比,離線倒置降壓拓?fù)渚哂懈叩男?,并?BOM 數(shù)量更少。這篇電源設(shè)計(jì)的文章,將會(huì)探討倒置降壓對(duì)于小功率 AC/DC 轉(zhuǎn)換的優(yōu)勢(shì)。
離線式電源是最常見(jiàn)的電源之一,也稱為交流電源。隨著越來(lái)越多的產(chǎn)品將典型的家庭功能集成在內(nèi),業(yè)界對(duì)輸出能力在 1W 以下的小功率離線轉(zhuǎn)換器的需求也越來(lái)越大。對(duì)于這些應(yīng)用,最重要的設(shè)計(jì)方面是效率、集成和低成本。
在決定拓?fù)浣Y(jié)構(gòu)時(shí),反激拓?fù)渫ǔJ侨魏涡」β孰x線轉(zhuǎn)換器的首選。但是,如果不需要隔離,這就可能不是最好的方法。假設(shè)終端設(shè)備是一個(gè)智能燈開(kāi)關(guān),用戶可以通過(guò)智能手機(jī)的 app 進(jìn)行控制,那么在這種情況下,用戶在操作過(guò)程中不可能接觸到暴露的電壓,因此就不需要隔離。
對(duì)于離線電源來(lái)說(shuō),反激拓?fù)涫且环N合理的解決方案,因?yàn)槠湮锪锨鍐危˙OM)數(shù)量較少,只有少數(shù)功率級(jí)元件,并且變壓器在設(shè)計(jì)上可以處理較寬的輸入電壓范圍。但是,如果設(shè)計(jì)的終端應(yīng)用不需要隔離呢?如果是這樣的話,考慮到輸入是離線的,設(shè)計(jì)人員可能仍然想要使用反激拓?fù)洹Ъ墒綀?chǎng)效應(yīng)晶體管(FET)和初級(jí)側(cè)調(diào)節(jié)的控制器可以創(chuàng)建小型的反激解決方案。
圖 1 給出的非隔離反激轉(zhuǎn)換器的典型原理圖,使用帶初級(jí)側(cè)調(diào)節(jié)的 UCC28910 反激式開(kāi)關(guān)電源 IC 進(jìn)行設(shè)計(jì)。雖然這個(gè)方案可行,但與反激電源相比,離線倒置降壓拓?fù)渚哂懈叩男?,并?BOM 數(shù)量更少。這篇電源設(shè)計(jì)的文章,將會(huì)探討倒置降壓對(duì)于小功率 AC/DC 轉(zhuǎn)換的優(yōu)勢(shì)。
圖 1:這種使用 UCC28910 反激開(kāi)關(guān)電源 IC 的非隔離反激設(shè)計(jì),可將 AC 轉(zhuǎn)換為 DC,但離線倒置拓?fù)淇梢愿行У赝瓿纱隧?xiàng)工作。
圖 2 畫出了倒置降壓的功率級(jí)。和反激電源一樣,它包含兩個(gè)開(kāi)關(guān)元件、一個(gè)磁性元件(是一個(gè)功率電感器而不是變壓器)和兩個(gè)電容器。顧名思義,倒置降壓拓?fù)漕愃朴诮祲恨D(zhuǎn)換器。開(kāi)關(guān)產(chǎn)生一個(gè)介于輸入電壓和地之間的開(kāi)關(guān)波形,然后通過(guò)電感電容網(wǎng)絡(luò)濾波。區(qū)別在于輸出電壓穩(wěn)壓成低于輸入電壓的電位。即使輸出“浮動(dòng)”在輸入電壓以下,它仍然可以正常為下游電子電路供電。
圖 2:倒置降壓功率級(jí)的簡(jiǎn)化原理圖。
將 FET 設(shè)置在低側(cè),反激控制器就可以直接對(duì)它驅(qū)動(dòng)。圖 3 所示的倒置降壓拓?fù)涫褂?UCC28910 反激開(kāi)關(guān)電源 IC 設(shè)計(jì)。1:1 耦合電感器充當(dāng)磁開(kāi)關(guān)元件。一次繞組充當(dāng)功率級(jí)的電感器。二次繞組為控制器提供定時(shí)和輸出電壓調(diào)節(jié)信息,并為控制器的本地偏置電源(VDD)電容器充電。
圖 3:使用 UCC28910 反激開(kāi)關(guān)電源 IC 的典型倒置降壓拓?fù)湓O(shè)計(jì)。
反激拓?fù)涞囊粋€(gè)缺點(diǎn)是能量通過(guò)變壓器傳遞的方式。這種拓?fù)湓?FET 的導(dǎo)通時(shí)間內(nèi)將能量存儲(chǔ)在氣隙中,然后在 FET 的關(guān)斷時(shí)間內(nèi)將其傳輸?shù)酱渭?jí)。實(shí)際的變壓器在初級(jí)側(cè)會(huì)有一定的漏感。當(dāng)能量轉(zhuǎn)移到次級(jí)側(cè)時(shí),剩余的能量會(huì)存儲(chǔ)在漏感中。這個(gè)能量是不能用的,需要使用齊納二極管或電阻電容網(wǎng)絡(luò)進(jìn)行耗散。
在降壓拓?fù)渲?,漏電能?FET 的關(guān)斷時(shí)間內(nèi)通過(guò)二極管 D7 傳遞到輸出端。這樣可以減少元器件數(shù)量并提高效率。
另一個(gè)區(qū)別是每個(gè)磁性元件的設(shè)計(jì)和傳導(dǎo)損耗。因?yàn)榈怪媒祲和負(fù)渲挥幸粋€(gè)繞組來(lái)傳輸電能,所以所有的電能傳輸電流都會(huì)通過(guò)它,這就實(shí)現(xiàn)了良好的銅利用率。反激拓?fù)鋭t不具有這么好的銅利用率。當(dāng) FET 導(dǎo)通時(shí),電流通過(guò)一次繞組,而二次繞組中卻沒(méi)有。當(dāng) FET 關(guān)斷時(shí),電流通過(guò)二次繞組,而一次繞組中卻沒(méi)有。因此,在反激式設(shè)計(jì)中,變壓器要儲(chǔ)存更多的能量,并且需要使用更多的銅來(lái)提供相同的輸出功率。
圖 4 對(duì)具有相同輸入、輸出規(guī)格的降壓轉(zhuǎn)換器電感器和反激變壓器的原、副邊繞組的電流波形進(jìn)行了比較。降壓轉(zhuǎn)換器電感器的波形在左側(cè)的單獨(dú)藍(lán)色框中,反激轉(zhuǎn)換器的原、副邊繞組在右側(cè)的兩個(gè)紅色框中。
對(duì)于各種波形來(lái)說(shuō),傳導(dǎo)損耗可以按均方根電流的平方乘以繞組電阻的方式來(lái)計(jì)算。因?yàn)榻祲恨D(zhuǎn)換器只有一個(gè)繞組,所以磁場(chǎng)中的總傳導(dǎo)損耗就是這一個(gè)繞組的損耗。然而,反激轉(zhuǎn)換器的總傳導(dǎo)損耗是原、副邊繞組損耗之和。此外,在相同的功率水平下,反激轉(zhuǎn)換器中磁性元件的物理尺寸要比倒置降壓設(shè)計(jì)更大。兩個(gè)元件的儲(chǔ)能均等于½ L × IPK2。
對(duì)于圖 4 所示的波形,根據(jù)計(jì)算,倒置降壓設(shè)計(jì)所需存儲(chǔ)的電能僅為反激設(shè)計(jì)的 1/4。因此,與相同功率的反激設(shè)計(jì)相比,倒置降壓設(shè)計(jì)的尺寸要小得多。
圖 4:降壓拓?fù)渑c反激拓?fù)渲须娏鞑ㄐ蔚谋容^。
當(dāng)不需要隔離時(shí),反激拓?fù)洳⒉豢偸切」β孰x線應(yīng)用的最佳解決方案。倒置降壓拓?fù)溆捎诳梢允褂酶〉淖儔浩?/ 電感器,因此可以提供更高的效率和更低的 BOM 成本。對(duì)于電力電子領(lǐng)域的設(shè)計(jì)人員來(lái)說(shuō),對(duì)于給定的規(guī)格,必須要考慮所有可能的拓?fù)浣鉀Q方案,從而確定最佳匹配。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
特別推薦
- 隨時(shí)隨地享受大屏幕游戲:讓便攜式 4K 超高清 240Hz 游戲投影儀成為現(xiàn)實(shí)
- 在發(fā)送信號(hào)鏈設(shè)計(jì)中使用差分轉(zhuǎn)單端射頻放大器的優(yōu)勢(shì)
- 第9講:SiC的加工工藝(1)離子注入
- 移遠(yuǎn)通信再推兩款新型4G、Wi-Fi、GNSS三合一組合天線
- Bourns 推出全新雙繞組系列,擴(kuò)展屏蔽功率電感產(chǎn)品組合
- 貿(mào)澤開(kāi)售AMD Versal AI Edge VEK280評(píng)估套件
- 安森美Hyperlux圖像傳感器將用于斯巴魯新一代集成AI的EyeSight系統(tǒng)
技術(shù)文章更多>>
- 在智能照明產(chǎn)品設(shè)計(jì)中實(shí)施Matter協(xié)議的經(jīng)驗(yàn)教訓(xùn)
- 艾睿電子助力SAVART Motors擴(kuò)大其在印尼的電動(dòng)車制造規(guī)模
- 隔離飛電容多電平變換器的硬件設(shè)計(jì)
- 【“源”察秋毫系列】多次循環(huán)雙脈沖測(cè)試應(yīng)用助力功率器件研究及性能評(píng)估
- 高信噪比MEMS麥克風(fēng)驅(qū)動(dòng)人工智能交互
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲(chǔ)器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro