【導(dǎo)讀】在上一篇文章“【干貨 】 如何選擇合適的基準(zhǔn)電壓源?(二)”中,我們講解了基準(zhǔn)電壓源的規(guī)格和類型。本文中,我們將講解如何為應(yīng)用選擇恰當(dāng)?shù)幕鶞?zhǔn)電壓源。
在上一篇文章“【干貨 】 如何選擇合適的基準(zhǔn)電壓源?(一)”中,我們講解了基準(zhǔn)電壓源的規(guī)格和類型。本文中,我們將講解如何為應(yīng)用選擇恰當(dāng)?shù)幕鶞?zhǔn)電壓源。
基準(zhǔn)電壓源電路
有許多方法可以設(shè)計(jì)基準(zhǔn)電壓源IC,而每種方法都有特定的優(yōu)點(diǎn)和缺點(diǎn)。
基于齊納二極管的基準(zhǔn)電壓源
深埋齊納型基準(zhǔn)電壓源是一種相對簡單的設(shè)計(jì)。齊納(或雪崩)二極管具有可預(yù)測的反向電壓,該電壓具有相當(dāng)好的溫度穩(wěn)定性和非常好的時(shí)間穩(wěn)定性。如果保持在較小溫度范圍內(nèi),這些二極管通常具有非常低的噪聲和非常好的時(shí)間穩(wěn)定性,因此其適用于基準(zhǔn)電壓變化小的應(yīng)用。
與其他類型的基準(zhǔn)電壓源電路相比,這種穩(wěn)定性可歸因于少元件數(shù)量和小芯片面積,而且齊納元件的構(gòu)造很精巧。然而,初始電壓和溫度漂移的變化相對較大,這很常見??梢栽黾与娐穪硌a(bǔ)償這些缺陷,或者提供一系列輸出電壓。分流和串聯(lián)基準(zhǔn)電壓源均使用齊納二極管。
帶隙基準(zhǔn)電壓源
齊納二極管雖然可用于制作高性能基準(zhǔn)電壓源,但缺乏靈活性。具體而言,它需要7V以上的電源電壓,而且提供的輸出電壓相對較少。相比之下,帶隙基準(zhǔn)電壓源可以產(chǎn)生各種各樣的輸出電壓,電源裕量非常?。ㄍǔP∮?00mV)。帶隙基準(zhǔn)電壓源可設(shè)計(jì)用來提供非常精確的初始輸出電壓和很低的溫度漂移,無需的耗時(shí)在應(yīng)用中校準(zhǔn)。
帶隙操作基于雙極結(jié)型晶體管的基本特性。圖1所示為一個(gè)基本帶隙基準(zhǔn)電壓源??梢钥闯?,一對不匹配的雙極結(jié)型晶體管的VBE具有與溫度成正比的差異。這種差異可用來產(chǎn)生一個(gè)電流,其隨溫度線性上升。當(dāng)通過電阻和晶體管驅(qū)動該電流時(shí),如果其大小合適,晶體管的基極-發(fā)射極電壓隨溫度的變化會抵消電阻兩端的電壓變化。雖然這種抵消不是完全線性的,但可以通過附加電路進(jìn)行補(bǔ)償,使溫度漂移非常低。
圖1:設(shè)計(jì)帶隙電路提供理論上為零的溫度系數(shù)
基本帶隙基準(zhǔn)電壓源背后的數(shù)學(xué)原理很有意思,因?yàn)樗鼘⒁阎獪囟认禂?shù)與獨(dú)特的電阻率相結(jié)合,產(chǎn)生理論上溫度漂移為零的基準(zhǔn)電壓。圖1顯示了兩個(gè)晶體管,經(jīng)調(diào)整后,Q10的發(fā)射極面積為Q11的10倍,而Q12和Q13的集電極電流保持相等。這就在兩個(gè)晶體管的基極之間產(chǎn)生一個(gè)已知電壓:
其中,k為玻爾茲曼常數(shù),單位為J/K(1.38×10-23),T為開氏溫度(273+T(°C));q為電子電荷,單位為庫侖(1.6x10-19)。在25°C時(shí),kT/q的值為25.7mV,正溫度系數(shù)為86μV/°C。?VBE為此電壓乘以ln(10)或2.3,25°C時(shí)電壓約為60mV,溫度系數(shù)為0.2mV/°C。
將此電壓施加到基極之間連接的50k電阻,產(chǎn)生一個(gè)與溫度成比例的電流。該電流偏置二極管Q14,25°C時(shí)其電壓為575mV,溫度系數(shù)為-2.2mV/°C。電阻用于產(chǎn)生具有正溫度系數(shù)的壓降,其施加到Q14二極管電壓上,從而產(chǎn)生大約1.235V的基準(zhǔn)電壓電位,理論上溫度系數(shù)為0mV/°C。這些壓降如圖1所示。電路的平衡提供偏置電流和輸出驅(qū)動。
分?jǐn)?shù)帶隙基準(zhǔn)電壓源
這種基準(zhǔn)電壓源基于雙極晶體管的溫度特性設(shè)計(jì),但輸出電壓可以低至只有數(shù)mV。它適用于超低電壓電路,特別是閾值必須小于常規(guī)帶隙電壓(約1.2V)的比較器應(yīng)用。
圖2所示為LM10的核心電路,同正常帶隙基準(zhǔn)電壓源相似,其中結(jié)合了與溫度成正比和成反比的元件,以獲得恒定的200mV基準(zhǔn)電壓。分?jǐn)?shù)帶隙基準(zhǔn)電壓源通常使用?VBE產(chǎn)生一個(gè)與溫度成正比的電流,使用VBE產(chǎn)生一個(gè)與溫度成反比的電流。二者以適當(dāng)?shù)谋壤谝粋€(gè)電阻元件中合并,以產(chǎn)生不隨溫度變化的電壓。電阻大小可以更改,從而改變基準(zhǔn)電壓而不影響溫度特性。這與傳統(tǒng)帶隙電路的不同之處在于,分?jǐn)?shù)帶隙電路合并電流,而傳統(tǒng)電路傾向于合并電壓,通常是發(fā)射極、基極電壓和具有相反溫度漂移 (TC)的I•R。
圖2:200mV基準(zhǔn)電壓源電路
像LM10電路這樣的分?jǐn)?shù)帶隙基準(zhǔn)電壓源在某些情況下同樣是基于減法。某些器件具有微功率、低電壓400mV基準(zhǔn)和放大器的串聯(lián)基準(zhǔn)。因此,可以通過改變放大器的增益來改變基準(zhǔn)電壓,并提供一個(gè)緩沖輸出。使用這種簡單電路可以產(chǎn)生低于電源電壓0.4V至幾毫伏的任何輸出電壓。
圖3:支持與低至400mV的閾值進(jìn)行比較
有些器件其將400mV基準(zhǔn)電壓源與比較器相結(jié)合,是集成度更高的解決方案,可用作電壓監(jiān)控器或窗口比較器。400mV基準(zhǔn)電壓源可以監(jiān)控小輸入信號,從而降低監(jiān)控電路的復(fù)雜性(圖3);它還能監(jiān)控采用非常低電源電壓工作的電路元件。如果閾值較大,可以添加一個(gè)簡單的電阻分壓器(圖4)。這些產(chǎn)品均采用小尺寸封裝(SOT23),功耗很低(低于10μA),支持寬電源范圍(1.4V至18V)。
圖4:通過輸入電壓分壓來設(shè)置較高閾值
選擇基準(zhǔn)電壓源
了解所有這些選項(xiàng)之后,如何為應(yīng)用選擇恰當(dāng)?shù)幕鶞?zhǔn)電壓源呢?以下是一些用來縮小選擇范圍的竅門:
● 電源電壓非常高?選擇分流基準(zhǔn)電壓源。
● 電源電壓或負(fù)載電流的變化范圍很大?選擇串聯(lián)基準(zhǔn)電壓源。
● 需要高功效比?選擇串聯(lián)基準(zhǔn)電壓源。
● 確定實(shí)際溫度范圍。溫度范圍包括0°C至70°C、-40°C至85°C和-40°C至125°C。
● 精度要求應(yīng)切合實(shí)際。了解應(yīng)用所需的精度非常重要。這有助于確定關(guān)鍵規(guī)格??紤]到這一要求,將溫度漂移乘以指定溫度范圍,加上初始精度誤差、熱遲滯和預(yù)期產(chǎn)品壽命期間的長期漂移,再減去任何將在出廠時(shí)校準(zhǔn)或定期重新校準(zhǔn)的項(xiàng),便得到總體精度。對于要求最苛刻的應(yīng)用,還可以加上噪聲、電壓調(diào)整率和負(fù)載調(diào)整率誤差。例如:
一個(gè)基準(zhǔn)電壓源的初始精度誤差為0.1%(1000ppm),-40°C至85°C范圍內(nèi)的溫度漂移為25ppm/°C,熱遲滯為200ppm,峰峰值噪聲為2ppm,時(shí)間漂移為50ppm/√kHr。
那么在電路建成時(shí)總不確定性將超過4300ppm。
在電路通電后的前1000小時(shí),這種不確定性增加50ppm。初始精度可以校準(zhǔn),從而將誤差降低至3300ppm+50ppm•√(t/1000小時(shí))。
● 實(shí)際功率范圍是什么?最大預(yù)期電源電壓是多少?是否存在基準(zhǔn)電壓源IC必須承受的故障情況,例如電池電源切斷或熱插拔感應(yīng)電源尖峰等?這可能會顯著減少可選擇的基準(zhǔn)電壓源數(shù)量。
● 基準(zhǔn)電壓源的功耗可能是多少?基準(zhǔn)電壓源往往分為幾類:
大于1mA,~500μA,<300μA,<50μA,<10μA,<1μA。
● 負(fù)載電流有多大?負(fù)載是否會消耗大量電流或產(chǎn)生基準(zhǔn)電壓源必須吸收的電流?很多基準(zhǔn)電壓源只能為負(fù)載提供很小電流,很少基準(zhǔn)電壓源能夠吸收大量電流。負(fù)載調(diào)整率規(guī)格可以有效說明這個(gè)問題。
● 安裝空間有多少?基準(zhǔn)電壓源的封裝多種多樣,包括金屬帽殼、塑料封(DIP、SOIC、SOT)和非常小的封裝,例如采用2mmx2mm DFN的產(chǎn)品。人們普遍認(rèn)為,較大封裝的基準(zhǔn)電壓源因機(jī)械應(yīng)力引起的誤差要小于較小封裝的基準(zhǔn)電壓源。雖然確有某些基準(zhǔn)電壓源在使用較大封裝時(shí)性能更好,但有證據(jù)表明,性能差異與封裝大小沒有直接關(guān)系。更有可能的是,由于采用較小封裝的產(chǎn)品使用的芯片較小,所以必須對性能進(jìn)行某種取舍以適應(yīng)芯片上的電路。通常,封裝的安裝方法對性能的影響比實(shí)際封裝還要大,密切注意安裝方法和位置可以最大限度地提高性能。此外,當(dāng)PCB彎曲時(shí),占位面積較小的器件相比占位面積較大的器件,應(yīng)力可能更小。