【導讀】如何利用不同資源為多樣化的負載提供高性能電源,從而保證架構的所有部分都在其功率和散熱范圍內運行,同時還可優(yōu)化效率和成本目標。本文探討了問題、技術、方法、工具和構建模塊,這些都可能有助于復雜電源系統(tǒng)項目的順利完成。
簡介
現(xiàn)在,高性能電源系統(tǒng)已經(jīng)有了長足進展,設計人員正在使用多個輸入電壓,驅動種類繁多應用的多路電壓軌。由于確保PoL穩(wěn)壓器盡可能靠近負載的需求,設計人員需要在一個非常小的范圍裝滿大量功率轉換功能。與此同時,企業(yè)資源正趨于擴展到工程師期望的多任務地步,常常是由多面手,而不是電源專家來負責設計電源系統(tǒng)。因此,當今復雜的電源要求可能令設計人員非常頭痛:如何利用不同資源為多樣化的負載提供高性能電源,從而保證架構的所有部分都在其功率和散熱范圍內運行,同時還可優(yōu)化效率和成本目標。
新的應用帶來了進一步的挑戰(zhàn)。例如,隨著遷移到更便宜、更清潔、更高效能源的發(fā)電,以及政府推動的應用,企業(yè)正在尋找如何能夠通過轉向高壓直流(HVDC)配電來滿足立法和成本目標。這就需要有不同的方法為所使用的電子設備來設計電源系統(tǒng)。
在這篇文章中,我們探討了問題、技術、方法、工具和構建模塊,這些都可能有助于復雜電源系統(tǒng)項目的順利完成。
老方法已經(jīng)被系統(tǒng)需求超越
回首30年來,大多數(shù)系統(tǒng)的電源需求都采用集中式供電方式來提供。然而,電子技術的一個趨勢是要求設備體積更小、更輕,而功能更加強大。通信設備的開發(fā)有助于實現(xiàn)互聯(lián)網(wǎng)革命,這需要布滿了服務器的數(shù)據(jù)中心。系統(tǒng)將變得更小,提供更高的性能,而其功率要求將變得越來越苛刻。
很明顯,其他一些東西也需要發(fā)展——為電子器件供電的方式。大型集中式電源根本無法勝任為下一代產品供電的任務,因此,電源轉換需要更靠近負載。能夠用集中的盒子為設備供電的歲月已一去不復返了。
電源轉換需要滿足新負載的不同要求:一個電壓不可能適合所有負載?,F(xiàn)在的負載需要多路電壓軌,要求滿足嚴格的調整率的要求,而且需要快速的瞬態(tài)響應。因此,電源轉換必須成為系統(tǒng)的一個組成部分,需要設計在設備的內部和外部。
隨著器件需要更靠近負載點的推動而變得越來越小,我們已經(jīng)看到熱耗散密度隨著時間推移而上漲的趨勢。開發(fā)更小功率元件的推動力已經(jīng)超出了相應的效率改善。多年來,諸如磚型電源的器件形成了電源系統(tǒng)的中堅,其功率密度正受到了限制。應當清楚的是,除了更有效率,功率元件還需要更加強于散熱,并支持靈活的熱管理。
新型功率元件實現(xiàn)了新方法
沒有封裝技術的根本進步,功率密度就不能持續(xù)提升??捎糜诂F(xiàn)代系統(tǒng)構建模塊的新型功率元件正在開發(fā),這些模塊可提供更高的功率密度、更好的散熱性能、更大的降壓比和集成的磁性結構。這些元件也有助于全新配電設計的出現(xiàn),包括分比式電源架構(Factorized Power Architecture,F(xiàn)PA),并支持高壓直流(HVDC)等新的應用,這有助于進一步提高效率,并使用替代能源。
那么,工程師如何充分利用現(xiàn)在可用的高性能構建模塊,認真考慮并著手構建一個設計,負責設計一個項目中的優(yōu)化的電源系統(tǒng)呢?這確實是一個艱難的選擇——特別是當這不是你的專業(yè)領域時。這里所需要的是一種有大量支持的無風險方法,不允許出錯;重新投片價格昂貴,而且可能會導致錯過時機。
站在電源設計創(chuàng)新前沿的公司Vicor已經(jīng)率先推出了功率元件設計方法。工程師們可以利用一種行之有效的方法,采用業(yè)界成熟的元件,可預見和經(jīng)濟高效地配置高性能電源系統(tǒng)。
功率元件是由專業(yè)電源工程師針對效率、功率密度、瞬態(tài)響應和EMI進行了全面優(yōu)化的專用模塊。通過這種方法,而不是使用分立元件開發(fā)電源鏈,所有這些關鍵參數(shù)都已經(jīng)過優(yōu)化,并為設計師準備好了針對任何電源設計項目的一個最合適的解決方案。另外,這些模塊的結構完全適合未來的設計重復使用,節(jié)省了時間和精力。
如果再結合可用的系列工具和資源,這種方法將以更低的風險實現(xiàn)一個更加快速和更加簡單的設計周期,來完成項目,并將產品推向市場。
功率元件設計方法有三個步驟:確定、構建和實施。
步驟1—確定
這是一個項目電源需求的“大局”觀,定義了電壓軌數(shù)量、電壓和電流的需求,同時考慮項目的時間。在這個階段,要做出這些需求的列表,并初步考慮可以用來滿足這些需求的產品類型。
圖1:第一步是列出項目的電源需求。在我們的這個例子中,我們假設有11路電壓軌,
以遞減功率級別列于表中。為了方便,我們稱之為主電源軌(MR)和輔助電壓軌(AR)。備注欄中包含了所有特殊要求。
以遞減功率級別列于表中。為了方便,我們稱之為主電源軌(MR)和輔助電壓軌(AR)。備注欄中包含了所有特殊要求。
什么樣的產品能夠滿足要求呢?有很多這種信息的來源。例如,Vicor提供了一種解決方案選擇工具,可以搜索可用元件的數(shù)據(jù)庫,并推薦滿足客戶的輸入和輸出需求的解決方案。利用一個智能工具,如Vicor解決方案選擇工具(solution selector),可將產生可能元件的候選者名單所需要的時間縮短到幾乎為零,并且可以很容易地根據(jù)對應用來說最重要的標準,為特定設計選擇一個最佳的元件。大多數(shù)工程師恰恰沒有令人奢望的“學習時間”來手動完成這項重要任務。
圖2:使用Vicor的PowerBench工具來簡化元件選擇過程。
[page]
有哪些是可用的典型功率元件:
首先是功率傳輸。在這里,功率元件必須采用高壓直流或交流電源,并把它變換為一個安全特低電壓(SELV)。在很多高性能應用中,工程師們正在利用高電壓和高電流將電源提供給他們的系統(tǒng)。由于來自器件的散熱,選擇熱適應的元件至關重要。這些元件將需要放置在系統(tǒng)內部的多個位置。這包括在一個機箱或主板上安裝的電源系統(tǒng),而每個元件的相應冷卻都需要加以考慮。
接下來是從SELV傳送功率至負載點。工程師們需要為他們的應用謹慎選擇適當?shù)碾妷很?。過多的轉換級將降低應用的效率。近年來,電源設計已經(jīng)開始從12V軌轉向可提供更高系統(tǒng)效率的48V軌。我們面臨的挑戰(zhàn)是選擇能夠以最高效率提供合適性能的最佳元件。像Vicor的Whiteboard工具可幫助工程師們使用不同SELV來評估其設計的性能。
終于有了負載點元件的選擇?;谶x擇的SELV,工程師需要選擇達到PoL要求所需的元件,以便可以在高電流時達到低于1V。其中的隔離和調節(jié)是必需的,可以使用DC-DC轉換器,如Vicor DC轉換器模塊(DCM)。設計人員還可以使用專為分比式電源架構設計的元件,其中的調節(jié)和電壓變換/隔離功能是分開的。選擇后者有助于設計人員獲得高功率密度,這相當于具備了在一個小空間內轉換大量電能的能力。
步驟2—構建
構建系統(tǒng)的第一個步驟是創(chuàng)建一個電源系統(tǒng)的方框圖,從輸出開始,然后向輸入后向推進。從最低功率級別開始它的運作更好,并從那里繼續(xù)工作,以便可以審查功率元件類別,并隨功率級別的增加在必要時做出改變。
根據(jù)適當功率級別選擇正確的元件類別非常重要。例如,在低功耗條件下,系統(tǒng)級封裝產品(SiP),如Vicor ZVS降壓穩(wěn)壓器是最好的解決方案。在較高功率級別,更好的方法可能是使用Vicor的ChiP產品(Converter housed in Package,轉換器級封裝)。根據(jù)驅動負載所需的電壓軌數(shù)量的復雜性,可以在應用中使用SiP和ChiP的組合。
這將有助于實現(xiàn)系統(tǒng)內的最大功率密度和成本效益,并保持系統(tǒng)中每個器件的高效率運行。
回頭看一下圖1,很明顯,前三路電壓軌(MR#1、2和3)是需要最高功率級別器件的電壓軌,而最后五路電壓軌(MR#7直到AR#2)是功率級別最低的器件。其余的(MR#4直到MR#6)介于兩者之間。在這里,設計人員將需要利用自己的判斷力,決定器件方面的選擇。完成了輸出工作后,就可以開始在系統(tǒng)框圖類別中建立一個我們需要的電源模塊和功率級別的畫面。
第2步-構建-按類區(qū)分
圖3:從電源軌的需求分析,我們可以判斷最合適的功率元件類別。
第2步-構建-框圖-工作回到輸入端(2)
第2步-構建-框圖-如需要優(yōu)化評估
圖4:繼續(xù)剛才的工作,我們可以確定為每路電壓軌提供功率級別需要的元件類別。
在這個級,我們應該時刻牢記確保我們平衡負載,并利用每個器件的功率容量所需的功率級別。
在這里,我們看到了我們原來估計的優(yōu)化。
[page]
在這個級,我們應該時刻牢記確保我們平衡負載,并利用每個器件的功率容量所需的功率級別。
在這里,我們看到了我們原來估計的優(yōu)化。
第2步-構建-最終框圖
圖5:在這里,我們看到現(xiàn)在引入了驅動電壓軌的ACFE。這里非常重要的是判斷每路電壓軌上的負載,
并確保負載均操作于接近具有合適安全裕度的最大值。
并確保負載均操作于接近具有合適安全裕度的最大值。
步驟3—實施
一旦模塊完成,設計人員需要為這些模塊匹配器件編號,同時注意實現(xiàn)功能和仿真各自功率轉換元件鏈的所有專用電路。需要開發(fā)的其他電路可能包括濾波器、保持電路和電源時序。在設計的這個階段,工程師還應該考慮散熱、端接,以及封裝注意事項。
在我們的例子中,對電源有一些特殊的要求:在輔助電壓軌上升之前,MR#3上有一個延遲;而對MR#3嚴格調控將需要使用一個遙感回路。為實現(xiàn)精確的負載電流限制和精確匹配電壓軌和負載要求的其他參數(shù),考慮配置PRM也是有意義的。
對于那些需要使用PRM來調整設計的工程師們,Vicor提供了一個PowerBench仿真工具,可幫助進一步了解系統(tǒng)的性能。
圖6:PowerBench PRM仿真工具。
設計和開發(fā)工具
在過去,工程師們是通過參考器件數(shù)據(jù)表的計算,做出元件選擇并分析每一級的電源系統(tǒng)效率(和總系統(tǒng)性能)。
從數(shù)據(jù)表查看功效
圖7:獲得性能信息可能既費時又費力。
雖然完全令人滿意,但這種方法可能會變得有點單調乏味。為了簡化設計流程和節(jié)省時間,Vicor最近推出了PowerBench白板工具(whiteboard)。白板工具是利用一組合適的Vicor電源轉換元件設計和分析電源系統(tǒng)的一個在線工具。利用白板工具就不再需要查看包含在數(shù)據(jù)表中的運行和效率參數(shù),工程師只需利用在線工具繪制出電路框圖,所有計算即可在幾毫秒內完成。
由Powerbench白板工具產生的更精確、更實際的轉換效率達93.17%(以毫秒為單位自動生成)
圖8:白板工具采用以毫秒為單位的自動分析設計,并提供性能數(shù)據(jù),節(jié)約了時間和精力。
通過將系統(tǒng)熟悉的草圖符號保留在白板工具上,添加參數(shù)自動查找和計算,白板工具可進一步縮短使用功率元件設計方法完成一個設計的時間。
此外,Vicor的解決方案選擇工具還可與白板工具緊密結合。因此,解決方案選擇工具推薦的設計可以自動將設計導入白板工具,這樣工程師就不需要自己繪制系統(tǒng)。這時,工程師可以調整設計,以進一步滿足他們的需求,并快速了解設計的效率。
結論
功率元件已經(jīng)成為幫助工程師為當今電子系統(tǒng)設計復雜、高性能電源系統(tǒng)的一個關鍵因素。因為電源設計專家已經(jīng)優(yōu)化了效率、功率密度、瞬態(tài)響應、EMI和成本效益,幾乎所有電子工程師都可以利用這些器件開發(fā)出一個電源系統(tǒng),來滿足具有挑戰(zhàn)性的高性能要求。
在要求更好散熱性能的推動下,近期出現(xiàn)了許多功率元件創(chuàng)新。ChiP平臺提供了采用雙面冷卻的強于熱散熱的解決方案,是板上電源一個很好的范例。在未來,其他創(chuàng)新將進一步簡化電源系統(tǒng)設計人員的任務,特別是在電源的前端。
這篇文章表明,功率器件設計方法提供了一個簡單的三步方法,使工程師,即使不是電源專家,也可以構建能夠提供高效率和高功率密度的復雜電源鏈。通過使用在線工具,這種方法得以進一步簡化。但是,不像許多設計方案那樣,功率元件設計方法消除了來自設計過程的痛苦和風險,而無需工程師花時間學習技術。無需特殊培訓,工程師們就可以使用這一方法,縮短研發(fā)時間,同時確保優(yōu)化他們的下一個電源鏈,以提供所需的性能。www.vicorpower.com