引言
電機(jī)消耗的能量幾乎占全球電力的50%。隨著能源成本的持續(xù)上漲,業(yè)內(nèi)開始采用微處理器調(diào)速驅(qū)動(dòng)器替代效率低下的固定速率電機(jī)和驅(qū)動(dòng)器,這種新型電機(jī)控制技術(shù)與傳統(tǒng)驅(qū)動(dòng)器相比,能夠使能耗平均降低30%以上。雖然調(diào)速電機(jī)提高了系統(tǒng)本身的成本,但是,考慮到電機(jī)能夠節(jié)省的能量以及所增加的功能,只需短短幾年即可挽回最初的投資成本。
通用電機(jī)設(shè)計(jì)
直流電機(jī)、無(wú)刷直流和交流感應(yīng)電機(jī)是當(dāng)今工業(yè)應(yīng)用設(shè)計(jì)中最常見(jiàn)的電機(jī)。
直流電機(jī):低成本和高精度驅(qū)動(dòng)性能
直流電機(jī)是最先投入使用的電機(jī)類型,目前仍然以低開發(fā)成本和卓越的驅(qū)動(dòng)性能得到普遍應(yīng)用。在最簡(jiǎn)單的直流電機(jī)中,定子(即電機(jī)固定部件)為永久磁鐵,轉(zhuǎn)子(即電機(jī)的轉(zhuǎn)動(dòng)部件)上纏繞了電樞繞組,電樞繞組連接到機(jī)械換向開關(guān),該開關(guān)控制繞組電流的導(dǎo)通和關(guān)閉。磁鐵建立的磁通量與電樞電流相互作用,產(chǎn)生電磁扭矩,從而使電機(jī)做功。
電機(jī)速度通過(guò)調(diào)整電樞繞組的直流電壓進(jìn)行控制。根據(jù)具體應(yīng)用的不同,可以采用全橋、半橋或一個(gè)簡(jiǎn)單的降壓轉(zhuǎn)換器驅(qū)動(dòng)電樞繞組。這些轉(zhuǎn)換器的開關(guān)實(shí)現(xiàn)脈寬調(diào)制(PWM),從而獲得相應(yīng)的電壓。
Maxim的高邊或橋式驅(qū)動(dòng)器IC,如:MAX15024/ MAX15025,可以用來(lái)驅(qū)動(dòng)全橋或半橋電路的FET。直流電機(jī)還廣泛用于對(duì)速度、精度要求很高的伺服系統(tǒng)。為了滿足速度和精度的要求,基于微處理器的閉環(huán)控制和轉(zhuǎn)子位置非常關(guān)鍵。Maxim的MAX9641霍爾傳感器能夠用于提供轉(zhuǎn)子的位置信息。
交流感應(yīng)電機(jī):簡(jiǎn)單、堅(jiān)固耐用
交流感應(yīng)電機(jī)以簡(jiǎn)單、堅(jiān)固耐用而著稱,被廣泛用于工業(yè)領(lǐng)域。最簡(jiǎn)單的交流電機(jī)就是一個(gè)變壓器,原級(jí)電壓連接到交流電壓源,次級(jí)短路承載感應(yīng)電流。“感應(yīng)”電機(jī)的名稱源于“感應(yīng)次級(jí)電流”。定子載有一個(gè)三相繞組,轉(zhuǎn)子設(shè)計(jì)簡(jiǎn)單,通常被稱為“鼠籠”,其中,兩端的銅或鋁棒通過(guò)鑄鋁環(huán)短路。由于沒(méi)有轉(zhuǎn)子繞組和碳刷,這種電機(jī)的設(shè)計(jì)非??煽俊9ぷ髟?0Hz電壓時(shí),感應(yīng)電機(jī)恒速運(yùn)轉(zhuǎn)。
然而,當(dāng)采用電源電路和基于微處理器的系統(tǒng)時(shí),可以控制電機(jī)速度變化。變速驅(qū)動(dòng)器由逆變器、信號(hào)調(diào)理器和基于微處理器的控制器組成。逆變器采用三個(gè)半橋,頂部和底部切換以互補(bǔ)方式控制。Maxim提供多種半橋驅(qū)動(dòng)器,如MAX15024/MAX15025,可獨(dú)立控制頂部和底部FET。
精確測(cè)量三相電機(jī)電流、轉(zhuǎn)子位置及轉(zhuǎn)速是對(duì)感應(yīng)電機(jī)進(jìn)行高效閉環(huán)控制的必要條件。Maxim提供多款高邊和低邊電流放大器、霍爾傳感器以及同步采樣ADC,能夠在惡劣環(huán)境下精確測(cè)量這些參數(shù)。微處理器利用電流和位置數(shù)據(jù)產(chǎn)生三相橋路的邏輯信號(hào)。一種常見(jiàn)的閉環(huán)控制技術(shù)稱為矢量控制,它消除了磁場(chǎng)電流矢量和定子磁通量之間的耦合,從而能夠獨(dú)立控制,提供更快的瞬態(tài)響應(yīng)。
無(wú)刷直流電機(jī):高可靠性和高輸出功率
無(wú)刷直流(BLDC)電機(jī)既沒(méi)有換向器也沒(méi)有碳刷,相對(duì)于直流電機(jī)而言需要更少的維護(hù)。相對(duì)于感應(yīng)電機(jī)或直流電機(jī)而言,同等規(guī)格的無(wú)刷直流電機(jī)能提供更大的輸出功率。BLDC電機(jī)的定子與感應(yīng)電機(jī)的定子非常相似。但是,BLDC電機(jī)的轉(zhuǎn)子可以采用不同形式,當(dāng)然,都屬于永久磁鐵。氣隙磁通量由磁鐵固定,不受轉(zhuǎn)子電流的影響。BLDC電機(jī)還需要一定形式的轉(zhuǎn)子位置檢測(cè)。
通常利用定子中嵌入的霍爾器件檢測(cè)轉(zhuǎn)子位置。當(dāng)轉(zhuǎn)子的磁極經(jīng)過(guò)霍爾傳感器附近時(shí),會(huì)有一個(gè)信號(hào)指示通過(guò)的是北極還是南極。Maxim提供多款霍爾傳感器,如MAX9641,這些器件集成了兩個(gè)霍爾傳感器和數(shù)字邏輯電路,可提供磁場(chǎng)位置、方向輸出,從而簡(jiǎn)化設(shè)計(jì)并降低系統(tǒng)成本。
傳感器、信號(hào)轉(zhuǎn)換和數(shù)據(jù)接口的重要性
在電機(jī)控制環(huán)路中,有幾種類型的傳感器提供反饋信息。這些傳感器還用于檢測(cè)可能損壞系統(tǒng)的故障狀態(tài),從而提高系統(tǒng)可靠性。下面介紹傳感器在電機(jī)控制中的作用,特別是電流檢測(cè)放大器、霍爾傳感器和可變磁阻(VR)傳感器。其它內(nèi)容包括:利用高速ADC監(jiān)測(cè)、控制多通道電流和電壓,高精度電機(jī)控制所需的編碼器數(shù)據(jù)接口等。
電流監(jiān)測(cè)
電流是用于監(jiān)控并反饋給電機(jī)控制環(huán)路的常見(jiàn)信號(hào)。利用電流檢測(cè)放大器可以輕松地精確監(jiān)測(cè)系統(tǒng)流入、流出的電流。采用電流檢測(cè)放大器可以省去傳感器,因?yàn)樾枰獪y(cè)量的是電信號(hào)本身。電流檢測(cè)放大器能夠檢測(cè)短路和瞬態(tài)狀況,并監(jiān)測(cè)電源和電池反接故障。
電流測(cè)量
電流測(cè)量有很多渠道,但截至目前為止,最常見(jiàn)的方案是采用檢流電阻進(jìn)行測(cè)量。這種方法的基本原理是:利用基于運(yùn)放的差分放大器對(duì)檢流電阻兩端的電壓進(jìn)行放大,然后測(cè)量放大后的電壓信號(hào)。傳統(tǒng)設(shè)計(jì)中通常采用分立器件。但分立方案存在一些缺點(diǎn),例如:需要匹配電阻、具有較差的溫漂特性,并占用較大面積。幸運(yùn)的是,這些缺點(diǎn)可以通過(guò)在設(shè)計(jì)中使用集成電流檢測(cè)放大器得以解決。
放大器不僅測(cè)量電流,還可以檢測(cè)電流方向,具有較寬的共模范圍,能夠提供高精度測(cè)量。電流測(cè)量可以采用低邊檢測(cè)(檢測(cè)電阻與接地通路串聯(lián)),也可以采用高邊檢測(cè)(檢測(cè)電阻與火線串聯(lián))。低邊檢測(cè)中,電路的輸入共模電壓較低,輸出電壓以地為參考,但低邊電阻在接地通路增加了所不希望的外部電阻。高邊檢測(cè)中,負(fù)載接地,但高邊電阻必須承受相當(dāng)大的共模信號(hào)。高邊檢測(cè)能夠?qū)收蠣顟B(tài)進(jìn)行監(jiān)測(cè),例如,電機(jī)外殼或繞組對(duì)地短路。
馬達(dá)控制:加速和減速的設(shè)計(jì)關(guān)鍵
基于電機(jī)控制的高效家電設(shè)計(jì)實(shí)現(xiàn)
電機(jī)控制實(shí)時(shí)性能與效率的智能優(yōu)化方案