通過(guò)使用一個(gè)串聯(lián)組件逐漸延長(zhǎng)新連接電容負(fù)載的充電時(shí)間,熱插拔器件可以完成這項(xiàng)工作。結(jié)果,該串聯(lián)組件具有巨大的損耗,并在充電事件發(fā)生期間產(chǎn)生溫升。大多數(shù)熱插拔設(shè)備的制造廠(chǎng)商都建議您查閱安全工作區(qū)域 (SOA) 曲線(xiàn),以便設(shè)備免受過(guò)應(yīng)力損害。圖 1 所示 SOA 曲線(xiàn)顯示了可接受能量區(qū)域和設(shè)備功耗,其一般為一個(gè)非常保守的估計(jì)。MOSFET 的主要憂(yōu)慮是其結(jié)溫不應(yīng)超出最大額定值。該曲線(xiàn)以圖形的形式向您表明,由于設(shè)備散熱電容的存在它可以處理短暫的高功耗。這樣可以幫助您開(kāi)發(fā)一個(gè)精確的散熱模型,以進(jìn)行更加保守、現(xiàn)實(shí)的估算。
在【電源設(shè)計(jì)小貼士9】中,我們討論了一種電氣等效電路,用于估算系統(tǒng)的散熱性能。我們提出在散熱與電流、溫度與電壓以及散熱與電阻之間均存在模擬電路。在本設(shè)計(jì)小貼士中,我們將增加散熱與電容之間的模擬電路。如果將熱量加到大量的材料之中,其溫升可以根據(jù)能量 (Q)、質(zhì)量 (m) 和比熱 (c) 計(jì)算得到,即:
能量正好是功率隨時(shí)間變化的積分:
然后合并上述兩個(gè)方程式,我們得到我們的電容散熱模擬 (m*c) 如下:
表1列出了一些常見(jiàn)材料及其比熱和密度,其或許有助于建模熱插拔器件內(nèi)部的散熱電容。
表1 常見(jiàn)材料的物理屬性
只需通過(guò)估算您建模的各種系統(tǒng)組件的物理尺寸,便可得到散熱電容。散熱能力等于組件體積、密度和比熱的乘積。這樣便可以使用圖 2 所示的模型結(jié)構(gòu)。
該模型以左上角一個(gè)電流源作為開(kāi)始,其為系統(tǒng)增加熱量的模擬。電流流入裸片的熱容及其熱阻。熱量從裸片流入引線(xiàn)框和封裝灌封材料。流經(jīng)引線(xiàn)框的熱量再流入封裝和散熱片之間的接觸面。熱量從散熱片流入熱環(huán)境中。遍及整個(gè)網(wǎng)絡(luò)的電壓代表高于環(huán)境的溫升。
熱阻和熱容的粗略估算顯示在整個(gè)網(wǎng)絡(luò)中。該模型可以進(jìn)行環(huán)境和DC模擬,可幫助根據(jù)制造廠(chǎng)商提供的SOA曲線(xiàn)圖進(jìn)行一些保守計(jì)算。