【導讀】由于CCD驅動器的電壓幅度降低了,使得CCD驅動器的自身功耗大幅度下降。由于共模扼流圈的差模電感很小,有效地避免了和CCD的容性負載產(chǎn)生諧振,因此本方案可以保證驅動信號的質量。對方案所設計的電路進行了電路板制作和測試。實驗結果表明,該方案中所設計的電路在保證驅動信號質量的前提下,可以有效地降低驅動電路的功耗。
電荷耦合器件(CCD)在光電成像領域獲得了廣泛的應用,它具有高速、低噪聲、寬動態(tài)范圍以及線性響應等優(yōu)點,然而要使CCD 正常工作,需要成像電路的支持。其中,CCD驅動電路是成像電路的重要組成部分,驅動電路負責把CCD收集的電荷包通過移位寄存器移動到輸出節(jié)點進行信號電壓的輸出。由于是串行移位,因此需要高速的驅動電路,而在高速成像領域,驅動電路的工作速度更高。此外,CCD驅動波形的電壓幅度往往很高,而CCD的移位寄存器是電容性負載,高速大電壓幅度驅動電容性負載需要較大的功耗,因此,基于CCD 的成像系統(tǒng)功耗都相對較大,功耗大會導致CCD驅動器溫度較高,溫度高會影響系統(tǒng)的可靠性和壽命。
針對這個問題,采用CCD 驅動器首先產(chǎn)生低電壓的驅動信號,然后利用共模扼流圈進行電壓的放大。由于CCD 驅動器的電壓降低了,使得CCD 驅動器的自身功耗大幅度下降。由于共模扼流圈的差模電感很小,可以有效避免和CCD 的容性負載產(chǎn)生諧振,因此可以保證驅動信號的質量。
CCD驅動電路分析
為了設計高速低功耗CCD 驅動電路,首先對CCD驅動電路進行建模分析。圖1所示為CCD 驅動電路的等效模型。其中V 為驅動器的信號輸出,Rdrv 代表驅動器的戴維寧等效內(nèi)阻,Cdrv 代表驅動器的等效電容,Rccd代表CCD內(nèi)部的走線等效串聯(lián)電阻,Cccd代表CCD的等效負載電容??梢奀CD 驅動電路為RC 充放電電路。
對于RC電路,其功耗可以用公式(1)近似給出。
式中:C 為電容值大??;V 為信號電壓幅度大??;f 為信號的工作頻率。公式中并不包含電阻R 的項,而實際上功耗則都消耗在電阻R 上,因為電容是不會消耗功耗的。對于相同的電容C ,當電阻值R 較大時,瞬態(tài)電流值較小但瞬態(tài)電流持續(xù)時間較長;當電阻值R 較小時,瞬態(tài)電流值較大但瞬態(tài)電流持續(xù)時間較短。這是公式中沒有電阻R 項的原因。
公式(1)還指出功耗和電壓的平方是成正比的。因此只要把電壓幅度降低就能大幅度降低功耗。而 CCD的驅動電壓往往很高,例如很多CCD 的復位脈沖驅動電壓幅度可以達到10 V.驅動電路的功耗由驅動器的功耗和CCD的功耗兩部分組成。驅動器的功耗是由于驅動器內(nèi)部的寄生電容導致的。例如CCD 驅動器EL7457 的內(nèi)部電容約為80 pF。通過共模扼流圈對電壓放大可以使得驅動器的輸出電壓幅度下降,這樣就可以有效地降低驅動器的功耗。
基于共模扼流圈的驅動電路設計
共模扼流圈是一個緊密耦合的1∶1變壓器,其漏電感較小。圖2所示為變壓器的電路符號,其由線圈電感L1 和線圈電感L2 組成,其互感為M 。當L1 = L2 = M時,該變壓器就是共模扼流圈。
分析此類含有耦合電感的電路,采用的方法是去耦等效受控源,如圖3 所示。把具有耦合的電路拆分成兩個獨立的支路進行分析。公式(2)和(3)給出具體的計算方法。
根據(jù)上述公式可知,當差模信號通過共模扼流圈時,由于磁通量相互抵消,所以就像共模扼流圈不存在一樣;當共模信號通過共模扼流圈時,由于磁通量相互疊加,所以共模扼流圈具有很大的阻抗。這里采用共模扼流圈實現(xiàn)高速CCD驅動的電路拓撲[4]如圖4所示。圖中V1 代表CCD 驅動器,L1 和L2 組成共模扼流圈,其同名端在圖中用小圓圈標出。C1 為交流耦合電容,避免變壓器直流短路。R1 和C2 為端接網(wǎng)絡,用于抵消共模扼流圈的漏電感。R2 代表CCD的等效串聯(lián)電阻,C2 代表CCD的等效負載電容。共模扼流圈在該電路中的作用是把輸入信號的電壓幅度放大2倍。其工作原理為輸入信號分別從L1 和L2 的非同名端加入。那么L2 產(chǎn)生的磁通會在L1 的兩端產(chǎn)生感應電壓,該感應電壓和加在L1端的電壓疊加從而實現(xiàn)了電壓的2倍放大。R1和C2 的取值需要在實際的電路板調試時進行調整以保證輸出信號達到最佳。
采用了上述電路后,把CCD驅動器的電壓幅度降低了1/2,因此CCD 驅動器的功耗也會下降為原來的1/4.
然而由于R1 和C2 端接網(wǎng)絡的存在,會使得功耗會有所上升。但是和直接用驅動器進行驅動相比,功耗還是大幅度下降。
實驗結果
為了實際驗證設計的電路,進行了電路板設計制作和測試。測試板的驅動器和共模扼流圈的電路布局如圖5所示,CCD驅動器為Intersil公司的EL7457,驅動器的供電為5 V。
共模扼流圈采用TDK 公司的ACM4520-901-2P,CCD 采用75 pF 的電容模擬其負載情況。端接網(wǎng)絡R1和C2 的取值分別為100 Ω和47 pF.這樣通過共模扼流圈后的驅動信號電壓被放大為10 V。圖6所示為實測的CCD驅動波形,該波形是CCD的復位脈沖,其頻率為12.5 MHz,其占空比設計為12.5%,實際波形的占空比和設計值相符。直接采用驅動器10 V供電驅動CCD時的電流為71 mA,功耗為710 mW;而采用該電路后,電流為39 mA,功耗為195 mW,如表1所示??梢姴捎霉材6罅魅篁寗悠鞯墓拇蠓认陆?。兩種情況下實測功耗都比理論值大,這是因為電路板有較長的走線,走線的寄生電容導致的功耗。