改進的DAC相位噪聲測量以支持超低相位噪聲DDS應(yīng)用
發(fā)布時間:2018-03-21 來源:Peter Delos 和 Jarrett Liner 責(zé)任編輯:wenwei
【導(dǎo)讀】在雷達應(yīng)用中,相位噪聲是要求高雜波衰減的系統(tǒng)的關(guān)鍵性能指標。相位噪聲是所有無線電系統(tǒng)都會關(guān)心的問題,但是雷達相比通信系統(tǒng)來說特別要求非常靠近載波頻率的頻偏位置的相位噪聲性能。
這些高性能系統(tǒng)中的系統(tǒng)設(shè)計人員將選擇超低相位噪聲振蕩器,并且從噪聲角度來講,信號鏈的目標就是使振蕩器相位噪聲曲線的惡化最小。這就要求對信號鏈上的各種元器件做殘余或加性的相位噪聲測量。
最近發(fā)布的高速數(shù)模轉(zhuǎn)換器(DAC)產(chǎn)品對于頻率轉(zhuǎn)換階段需要的任何LO的波形生成和頻率創(chuàng)建都非常有吸引力。然而,雷達目標會挑戰(zhàn)DAC相位噪聲的性能。
圖1. AD9164相位噪聲的改進。
在本文中,我們將展示AD9164 DAC在10KHz 頻偏處超過10dB的改進 的測量結(jié)果。改進如圖1所示,并且我們將會討論如何通過結(jié)合電源穩(wěn)壓器選擇和測試設(shè)置改進來達到這一結(jié)果。
相位噪聲定義
相位噪聲是周期信號過零點偏差的測量??紤]有相位波動的余弦波
相位噪聲可以通過相位變化的功率譜密度來確定
就線性而言,單邊相位噪聲定義為
相位噪聲 通常以10log(L(f))的dBc/Hz為單位來表示。然后可以將相位噪聲數(shù)據(jù)繪制到相對RF載波的偏移頻率中。
圖2. 相位噪聲繪圖方法。
相位噪聲進一步的重要定義就是絕對相位噪聲和殘余相位噪聲。絕對相位噪聲是系統(tǒng)中測量的總相位噪聲。殘余相位噪聲是測試設(shè)備的加性相位噪聲。這種區(qū)別在測試設(shè)置和確定系統(tǒng)中元件級別相位噪聲貢獻的過程中至關(guān)重要。
DAC/DDS相位噪聲測量方法
本部分圖表顯示DDS相位噪聲測試設(shè)置。對于DAC相位噪聲測量,可以設(shè)想將DAC作為直接數(shù)字頻率合成器(DDS)子系統(tǒng)的一部分。DDS是通過將與DAC通信的單片IC或FPGA或ASIC中的數(shù)字正弦波模式送給DAC來實現(xiàn)。在現(xiàn)代DDS設(shè)計中,數(shù)字相位誤差可以遠低于DAC誤差,而且DDS相位噪聲測量通常受限于DAC的性能。
最簡單和最常見的測試設(shè)置如圖3所示。一個時鐘源用于DDS并且DDS的輸出饋入到一個互相關(guān)類型的相位噪聲分析儀 。由于只需要一個DDS,所以很容易實現(xiàn)。然而,在這樣的測試設(shè)置下,沒有辦法提取振蕩器的貢獻以便僅僅顯示DDS的相位噪聲。
圖3. 絕對相位噪聲DDS測試設(shè)置包含DAC和振蕩器噪聲。
圖4顯示了兩種常用的方法用來從測量中去除振蕩器的相位噪聲 ,提供殘余噪聲測量。這些測量方法的缺點在于,在測試設(shè)置中需要額外的DAC。但是,優(yōu)點是可以應(yīng)用于系統(tǒng)級分析預(yù)算,作為DAC相位噪聲貢獻的一種非常好的指標。
圖4a. 使用鑒相器方法的DDS殘余相位噪聲測量。
圖4a顯示的是鑒相器方法。這種情況下,使用兩個DAC,將兩個DUT都下變頻至DC,可以減去振蕩器的貢獻。
圖4b. 使用互相關(guān)方法測量DDS殘余相位噪聲。
圖4b顯示的是使用互相關(guān)相位噪聲分析的方法。這種情況下,DDS2和DDS3可以用于將時鐘貢獻轉(zhuǎn)換到測量的LO端口,在互相關(guān)算法中去除它們的貢獻,并在測量中獲取DDS1殘余相位噪聲。
電源噪聲貢獻
在低噪聲模擬和RF設(shè)計中,電源噪聲是公認需要考慮的因素。電源紋波會周期性的調(diào)制到RF載波并在RF載波的頻偏等于紋波頻率的地方產(chǎn)生雜散。穩(wěn)壓器1/f噪聲也會調(diào)制到RF載波中,并體現(xiàn)在相位噪聲曲線中。圖5顯示了這些原理。
圖5. 電源缺陷調(diào)制到RF載波上。
測量結(jié)果
在研究DAC真正的相位噪聲性能的過程中,需要同時考慮測試設(shè)置和穩(wěn)壓器的噪聲性能。
DAC初始評估板包含 ADP1740 穩(wěn)壓器用于給模擬和時鐘提供電壓。 將噪聲譜密度與最近發(fā)布的超低噪聲穩(wěn)壓器和所選的ADM7155進行對比。圖6如產(chǎn)品數(shù)據(jù)手冊所示顯示了這些噪聲密度的對比情況。電源修改僅將ADM7155用于AD9164時鐘(數(shù)據(jù)手冊引腳VDD12_CLK)和模擬電壓(數(shù)據(jù)手冊引腳VDD12A)。
圖6. 穩(wěn)壓器噪聲密度比較。注意Y軸單位——ADM7155提高了一個數(shù)量級。
接下來,考慮殘余相位噪聲的測試設(shè)置選項。由于實用性和方便性,自帶互相關(guān)方法的Rohde and Schwarz FSWP成為首選。使用的測試設(shè)置如圖7所示。
圖7. AD9164相位噪聲測量的測試設(shè)置。
圖8. AD9164 800 MHz output phase noise comparisons.
圖8顯示了三種情況的測量結(jié)果。紅色曲線顯示了初始評估板的絕對相位噪聲測量結(jié)果。淺藍色曲線也是一種絕對測量結(jié)果,但提升了穩(wěn)壓器性能。深藍色曲線是殘余相位噪聲測量結(jié)果,也提升了穩(wěn)壓器性能。
測量結(jié)果指出了在初始研究中并不明顯的三種常規(guī)的限制區(qū)間。低于1 kHz的頻率受限于時鐘源近載波噪聲。1 kHz至100 kHz的頻率受限于穩(wěn)壓器選擇。高于100 kHz的頻率受限于時鐘源。由于使用的時鐘是用晶體振蕩器倍頻產(chǎn)生的6GHz,滾降來自于倍頻電路中的RF濾波器,因此高于10 MHz的急劇下降來自于時鐘源。
其他的一些DAC頻率也使用了提升穩(wěn)壓器性能的殘余相位噪聲方法進行了測量,圖9中概述了部分。這些改進在幾個評估板上都做了復(fù)現(xiàn),所有的情況都顯示了同樣的改進后的結(jié)果。
圖9. 改進了低噪聲穩(wěn)壓器性能的AD9164殘余相位噪聲測量。
表1. 包含一流的噪聲密度性能的穩(wěn)壓器系列
1噪聲與固定輸出電壓無關(guān)。
超低噪聲穩(wěn)壓器系列的噪聲密度相似,如表1所示。正如本文所展示的,穩(wěn)壓器對DAC的相位噪聲影響是值得注意的,超低噪聲穩(wěn)壓器系列推薦用于任何要求最佳的相位噪聲性能的RF系統(tǒng)中。
結(jié)語
相位噪聲基礎(chǔ)定義的復(fù)習(xí)、絕對和殘余相位噪聲、DAC相位噪聲測量測試設(shè)置以及穩(wěn)壓器噪聲貢獻。
本文演示的DAC相位噪聲性能改進包含殘余相位噪聲測量方法和最佳穩(wěn)壓器選擇。最終結(jié)果是,通過ADI公司的低噪聲穩(wěn)壓器系列對模擬電壓和時鐘電壓供電時,AD9164現(xiàn)在可支持超低相位噪聲、基于DDS的應(yīng)用。
參考電路
Bergeron, Jarrah. “分析及管理電源噪聲和時鐘抖動對高速DAC相位噪聲的影響”,《模擬對話》,第51卷,2017年。
Calosso, Claudio E., Yannick Gruson, and Enrico Rubiola. "DDS中的相位噪 聲和幅度噪聲",IEEE頻率控制專題論文集,2012年。
Jayamohan, Umesh. "為GSPS或RF采樣ADC供電;開關(guān)與LDO"?!赌M對話》,第50卷,2016年。
"11729B-1產(chǎn)品筆記,微波振蕩器的相位噪聲特性:鑒相器方法"。 Agilent, May,2007年5月。
Reeder, Rob. "高速ADC的電源設(shè)計",ADI公司,2012年。
Walls, Warren F. "交叉相關(guān)相位噪聲測量"。IEEE頻率控制專題論文集,1992年。
推薦閱讀:
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測器應(yīng)用與測試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會2024激發(fā)創(chuàng)新,推動智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實技術(shù)再獲獎分享供應(yīng)鏈挑戰(zhàn)下的自我成長
- 上海國際嵌入式展暨大會(embedded world China )與多家國際知名項目達成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
傳感器
傳感器模塊
船型開關(guān)
串聯(lián)電阻公式
創(chuàng)智成
磁傳感器
磁環(huán)電感
磁敏三極管
磁性存儲器
磁性元件
磁珠電感
存儲器
大功率管
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感