你的位置:首頁 > 測(cè)試測(cè)量 > 正文
減小隔離式同步柵極驅(qū)動(dòng)器的尺寸并降低復(fù)雜性
發(fā)布時(shí)間:2017-06-13 來源:Brian Kenne 責(zé)任編輯:wenwei
【導(dǎo)讀】帶同步整流功能的隔離式DC-DC轉(zhuǎn)換器的傳統(tǒng)設(shè)計(jì)方法是使用光耦合器或脈沖變壓器進(jìn)行隔離,并將其與一個(gè)柵極驅(qū)動(dòng)器IC結(jié)合在一起。本文將說明光耦合器和脈沖變壓器的局限性,并提出一種集成度更高的方法,其性能更高,解決方案尺寸和成本則低得多。
脈沖變壓器
使用脈沖變壓器可以耦合低電平信號(hào)、提供隔離并驅(qū)動(dòng)功率開關(guān),這種方法雖然具有一定優(yōu)勢(shì),但也存在一些局限性。在柵極驅(qū)動(dòng)應(yīng)用中,脈沖變壓器的一個(gè)優(yōu)勢(shì)是可以將3 V或5 V邏輯電平提升到15 V或更高的電壓,以便驅(qū)動(dòng)MOSFET的柵極。遺憾的是,為了驅(qū)動(dòng)高電流同步整流器電路,可能需要一個(gè)單獨(dú)的高電流柵極驅(qū)動(dòng)器IC。還有一點(diǎn)需要考慮:脈沖變壓器不能很好地處理占空比超過50%的信號(hào),這是它在柵極驅(qū)動(dòng)器應(yīng)用中的一個(gè)主要缺點(diǎn)。原因在于變壓器只能提供交流信號(hào),因?yàn)殍F芯磁通量必須每半個(gè)周期復(fù)位一次以維持伏秒平衡。
脈沖變壓器的另一個(gè)缺點(diǎn)是效率損失。使用脈沖變壓器驅(qū)動(dòng)MOSFET的柵極時(shí),變壓器必須先用正電平驅(qū)動(dòng),然后用負(fù)電平驅(qū)動(dòng),以便維持伏秒平衡。用于驅(qū)動(dòng)到負(fù)電平的能量不用于驅(qū)動(dòng)MOSFET的柵極,僅正電平對(duì)柵極充電。在變壓器由正直流電壓驅(qū)動(dòng)的典型應(yīng)用中,一個(gè)隔直電容連接到變壓器輸入端,并且變壓器由一個(gè)值為所施加電壓½的正電壓驅(qū)動(dòng)。這意味著,負(fù)電壓也是所施加電壓的½,因此脈沖變壓器的效率降低至50%。若將一個(gè)柵極驅(qū)動(dòng)器添加到變壓器輸出端,則變壓器和柵極驅(qū)動(dòng)器的整體效率不再是50%,但脈沖變壓器本身仍然存在至少50%的效率損失。
綜上所述,脈沖變壓器在柵極驅(qū)動(dòng)器應(yīng)用中具有如下缺點(diǎn):占空比限制、效率低下、解決方案尺寸較大,因而不適合高功率、高密度同步整流應(yīng)用。
圖1. 脈沖變壓器、光耦合器和ADuM3220柵極驅(qū)動(dòng)器解決方案
光耦合器
與脈沖變壓器相比,使用光耦合器作為柵極驅(qū)動(dòng)器來執(zhí)行同步整流具有一些優(yōu)勢(shì),但光耦合器本身也存在一些挑戰(zhàn)。光耦合器不需要像脈沖變壓器那樣維持伏秒平衡,因而不存在脈沖變壓器所具有的占空比限制。但是,光耦合器的響應(yīng)速度受到原邊發(fā)光二極管(LED)電容(典型值為60 pF)的限制,而且將二極管驅(qū)動(dòng)至高達(dá)1 MHz的速度也會(huì)受到其傳播延遲(最大值為100 ns)以及較慢的上升和下降時(shí)間(最大值為30 ns)的限制。
光耦合器用于同步整流器應(yīng)用的一個(gè)主要問題是通道間的時(shí)序偏差。光耦合器是作為分立器件采用塑料封裝構(gòu)建的,通道間的差異無法像在集成半導(dǎo)體工藝中那樣進(jìn)行控制,因而通道間匹配可能很大(最大值為40 ns)。在同步整流電路中,通道間的時(shí)序需要精確控制,以便減少一個(gè)通道關(guān)閉與另一個(gè)通道開啟之間的死區(qū)時(shí)間,否則開關(guān)損耗會(huì)提高,效率會(huì)受到影響。
由于電流傳輸比(CTR)的特性,使用光耦合器進(jìn)行設(shè)計(jì)可能很困難;CTR定義輸出晶體管的電流量與驅(qū)動(dòng)LED所需的電流量之比。影響CTR的因素包括溫度和老化,因此設(shè)計(jì)工程師需要估計(jì)CTR在光耦合器壽命和溫度范圍內(nèi)的變化。為使CTR不隨工作條件而變化,驅(qū)動(dòng)LED所需的電流可能超過10 mA,這對(duì)于高效率設(shè)計(jì)而言功耗太大。
此外,對(duì)于高功率同步整流器電源,需要電阻來偏置LED和光電晶體管,需要柵極驅(qū)動(dòng)器IC來提供光耦合器無法提供的高峰值電流。對(duì)于先進(jìn)的緊湊型電源,光耦合器解決方案的尺寸顯得過大。
ADUM3220 4 A柵極驅(qū)動(dòng)器
ADuM3220旨在用作隔離系統(tǒng)中的4A柵極驅(qū)動(dòng)器,以實(shí)現(xiàn)同步DC-DC轉(zhuǎn)換。傳統(tǒng)解決方案使用2個(gè)隔離器和1個(gè)雙通道柵極驅(qū)動(dòng)器。如圖1所示,一個(gè)雙通道柵極驅(qū)動(dòng)器IC可以與兩個(gè)脈沖變壓器或兩個(gè)光耦合器通道相配合,由此構(gòu)成的解決方案尺寸相當(dāng)大。如果電源應(yīng)用要求在較小的面積上提供大量功率,則圖1所示的ADuM3220就是一種不錯(cuò)的解決方案,不僅面積縮小50%以上,而且集成度更高,成本更低。
同步整流采用N溝道MOSFET,而不是二極管,目的是降低傳導(dǎo)損耗,并提高需提供數(shù)安培電流的電源效率。實(shí)施同步DC-DC轉(zhuǎn)換器架構(gòu)要求副MOSFET開關(guān)與主MOSFET開關(guān)保持開關(guān)同步。圖2顯示ADuM3220用于一個(gè)提供未調(diào)節(jié)輸出電壓的隔離式同步DC-DC轉(zhuǎn)換器的應(yīng)用電路。
DC-DC控制器向主開關(guān)和副開關(guān)發(fā)送PWM驅(qū)動(dòng)信號(hào)。主開關(guān)Q1和Q2在推挽動(dòng)作中以先開后合時(shí)序接通,驅(qū)動(dòng)變壓器T1的2個(gè)原線圈,如圖2的時(shí)序波形所示。T1的副線圈需要與主線圈同步開關(guān),即Q1接通時(shí)Q3接通,Q2接通時(shí)Q4接通。請(qǐng)注意,如果顯示Q3和Q4 PWM波形的話,其時(shí)序應(yīng)提前一個(gè)等于ADuM3220已知傳播延遲的時(shí)間量,使得Q3和Q4在應(yīng)該出現(xiàn)的時(shí)間出現(xiàn)。ADuM3220的典型傳播延遲僅為45 ns,其中包括數(shù)字隔離器延遲和柵極驅(qū)動(dòng)器延遲。柵極驅(qū)動(dòng)器與隔離器集成后,傳播延遲規(guī)格更精確,這是相對(duì)于分立脈沖變壓器和光耦合器解決方案的一個(gè)優(yōu)勢(shì)。
在高頻下執(zhí)行PWM開關(guān)時(shí),PWM控制信號(hào)需要非常嚴(yán)格的控制。例如,當(dāng)PWM頻率為ADuM3220的最大開關(guān)頻率1 MHz且占空比為50%時(shí),脈沖寬度為500 ns。如此小的脈沖寬度要求ADuM3220的通道間匹配非常出色,否則難以實(shí)現(xiàn)精確開關(guān)。ADuM3220的典型通道間匹配為1 ns,整個(gè)溫度范圍內(nèi)的最大值為5 ns。通道間的精密匹配特性有助于防止交叉導(dǎo)通,以免損壞MOSFET,并使死區(qū)時(shí)間最短,從而降低開關(guān)損耗,提高效率。
接下來我們考慮利用隔離反饋嚴(yán)格控制輸出電壓的應(yīng)用,占空比不再是固定值50%,而是不斷變化以控制輸出電壓。這種應(yīng)用中,在主開關(guān)均斷開期間,可能希望允許Q3和Q4開關(guān)同時(shí)接通,以防止Q3和Q4的主體二極管導(dǎo)通,導(dǎo)致效率下降。圖3所示應(yīng)用電路使用4 A柵極驅(qū)動(dòng)器ADuM3221,它與ADuM3220非常相似,但不具有非重疊控制邏輯,因而允許Q3和Q4同時(shí)接通。與ADuM3220不同,圖3所示提供調(diào)節(jié)輸出的ADuM3221柵極驅(qū)動(dòng)器的時(shí)序圖允許開關(guān)Q3和Q4在Q1和Q2均斷開時(shí)接通。
總而言之,對(duì)于隔離式同步DC-DC應(yīng)用,已經(jīng)證明:與脈沖變壓器和光耦合器解決方案相比,ADuM3220/ADuM3221能使解決方案尺寸縮小50%以上,通過集成降低設(shè)計(jì)復(fù)雜度,并且時(shí)序性能大為改善。
圖2. ADuM3220應(yīng)用原理圖和時(shí)序波形
圖3. 提供穩(wěn)壓輸出的ADuM3221應(yīng)用原理圖和時(shí)序波形
本文提到的產(chǎn)品。
推薦閱讀:
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長
- 上海國際嵌入式展暨大會(huì)(embedded world China )與多家國際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲(chǔ)器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro