【導(dǎo)讀】說起開關(guān)電源的難點(diǎn)問題,PCB布板問題不算很大難點(diǎn),但若是要布出一個精良PCB板一定是開關(guān)電源的難點(diǎn)之一(PCB設(shè)計(jì)不好,可能會導(dǎo)致無論怎么調(diào)試參數(shù)都調(diào)試布出來的情況,這么說并非危言聳聽)原因是PCB布板時考慮的因素還是很多的......
如:電氣性能,工藝路線,安規(guī)要求,EMC影響等等;考慮的因素之中電氣是最基本的,但是EMC又是最難摸透的,很多項(xiàng)目的進(jìn)展瓶頸就在于EMC問題;下面從二十二個方向給大家分享下PCB布板與EMC。
一、熟透電路方可從容進(jìn)行PCB設(shè)計(jì)之EMI電路
上面的電路對EMC的影響可想而知,輸入端的濾波器都在這里;防雷擊的壓敏;防止沖擊電流的電阻R102(配合繼電器減小損耗);關(guān)鍵的慮差模X電容以及和電感配合濾波的Y電容;還有對安規(guī)布板影響的保險絲;這里的每一個器件都至關(guān)重要,要細(xì)細(xì)品味每一個器件的功能與作用。設(shè)計(jì)電路時就要考慮的EMC嚴(yán)酷等級從容設(shè)計(jì),比如設(shè)置幾級濾波,Y電容數(shù)量的個數(shù)以及位置。壓敏大小數(shù)量選擇,都與我們對EMC的需求密切相關(guān),歡迎大家一起討論看似簡單其實(shí)每個元器件蘊(yùn)含深刻道理的EMI電路。
二、電路與EMC:(最熟悉的反激主拓?fù)洌纯措娐分心男╆P(guān)鍵地方蘊(yùn)含了EMC的機(jī)理)
上圖的電路中打圈幾部分:對EMC影響非常重要(注意綠色部分不是的),比如輻射大家都知道電磁場輻射是空間的,但基本的原理是磁通量的變化,磁通量涉及到磁場有效截面積,也就是電路中對應(yīng)的環(huán)路。電流可以產(chǎn)生磁場,產(chǎn)生的是穩(wěn)定的磁場,不能向電場轉(zhuǎn)化;但變化的電流產(chǎn)生變化的磁場,變化的磁場是可以產(chǎn)生電場(其實(shí)這就是有名的麥克斯韋方程我用通俗語言來說),變化的電場同理可產(chǎn)生磁場。所以一定要關(guān)注那些有開關(guān)狀態(tài)的地方,那就是EMC源頭之一,這里就是EMC源頭之一(這里說之一當(dāng)然后續(xù)還會講到其它方面); 比如電路中虛線環(huán)路,是開關(guān)管開通和關(guān)斷的環(huán)路,不僅設(shè)計(jì)電路時開關(guān)速度可以調(diào)節(jié)對EMC影響,布板走線環(huán)路面積也有著重要的影響!另二個環(huán)路是吸收環(huán)路和整流環(huán)路,先提前了解下,后面再講!
三、PCB設(shè)計(jì)與EMC的關(guān)聯(lián)
- PCB環(huán)路對EMC的影響非常重要,比如反激主功率環(huán)路,如果太大的話輻射會很差。
- 濾波器走線效果,濾波器是用來濾去干擾的,但若是PCB走線不好的話,濾波器就可能失去應(yīng)該有的效果。
- 結(jié)構(gòu)部分,散熱器設(shè)計(jì)接地不好會影響,屏蔽版的接地等;
- 敏感部分與干擾源頭過近,比如EMI電路與開關(guān)管很近,必然會導(dǎo)致EMC很差,需要有清晰的隔離區(qū)域。
- RC吸收回路的走線。
- Y電容接地與走線,還有Y電容的位置也很關(guān)鍵等等!
等等。先想到這說這些,后續(xù)會具體討論,先起個引子。
下面舉一個小例子:
如上圖中虛線框,X電容引腳走線做了內(nèi)縮的處理,大家可以學(xué)習(xí)下,如何讓電容引腳走線外掛(采用擠電流走線)。這樣X電容的濾波效果才能夠達(dá)到最佳狀態(tài)。
四、PCB設(shè)計(jì)之準(zhǔn)備事項(xiàng):(準(zhǔn)備充分了,方可設(shè)計(jì)步步穩(wěn)健,避免設(shè)計(jì)推翻重來)
大致有以下的一些方面,都是自己設(shè)計(jì)過程會去考慮,所有的內(nèi)容跟別的教程無關(guān),都是只是自己的經(jīng)驗(yàn)總結(jié)。
- 外觀結(jié)構(gòu)尺寸,包括定位孔,風(fēng)道流向,輸入輸出插座,需要與客戶系統(tǒng)匹配,還需要與客戶溝通裝配上的問題,限高等等。
- 安規(guī)認(rèn)證,產(chǎn)品做哪種認(rèn)證,哪些地方做到基本絕緣爬電距離要留夠,哪些地方做到加強(qiáng)絕緣留夠距離或開槽。
- 封裝設(shè)計(jì):有沒有特殊期間,如定制件封裝準(zhǔn)備。
- 工藝路線選定:單面板雙面板選擇,或是多層板,根據(jù)原理圖及板子尺寸,成本等綜合評估。
- 客戶的其他特殊要求。
結(jié)構(gòu)工藝相對會更靈活,安規(guī)還是比較固定的部分,做什么認(rèn)證,過什么安規(guī)標(biāo)準(zhǔn),當(dāng)然也有一些安規(guī)是很多標(biāo)準(zhǔn)中通用的,但也有一些特殊產(chǎn)品比如醫(yī)療會比較嚴(yán)苛。
為了新入門工程師朋友們不至于眼花繚亂;
接下來列出些普遍產(chǎn)品通用的,下面是對于IEC60065總結(jié)出來的具體布板要求,針對安規(guī)需要牢記,碰到具體產(chǎn)品要會針對性處理:
- 輸入保險絲焊盤制件的距離安規(guī)要求大于3.0MM,實(shí)際布板按照3.5MM(簡單說保險絲前按照3.5MM爬電距離,之后按照3.0MM爬電距離)
- 整流橋前后安規(guī)要求2.0MM,布板按照2.5MM。
- 整流后安規(guī)一般不做要求,但是高低壓間根據(jù)實(shí)際電壓大小留距離,習(xí)慣400V高壓留2.0MM以上。
- 初次級間安規(guī)要求6.4MM(電氣間隙),爬電距離按照7.6MM為最佳。(注意這個跟實(shí)際輸入電壓相關(guān),需要查表具體計(jì)算,提供數(shù)據(jù)僅供參考,以實(shí)際場合為準(zhǔn))
- 初次級用冷地,熱地標(biāo)識清晰;L,N標(biāo)識,輸入AC INPUT標(biāo)識,保險絲警告標(biāo)識等等都需要清晰標(biāo)出。
大家對上面有疑問的,也可以討論,互相學(xué)習(xí)! 再次重申實(shí)際安規(guī)距離跟實(shí)際輸入電壓相關(guān)以及工作環(huán)境有關(guān),需要查表具體計(jì)算,提供數(shù)據(jù)僅供參考,以實(shí)際場合為準(zhǔn);
五、PCB設(shè)計(jì)之安規(guī)考慮其它因素
- 明白自己產(chǎn)品做什么認(rèn)證,屬于什么產(chǎn)品種類,比如醫(yī)療,通信,電力,TV等各不相同,但也有很多相通的地方。
- 安規(guī)中與PCB布板緊密的地方,了解絕緣的特點(diǎn),哪些地方是基本絕緣,哪些地方是加強(qiáng)絕緣,不同標(biāo)準(zhǔn)絕緣距離是不一樣的。最好是會查標(biāo)準(zhǔn),并且會計(jì)算電氣距離,爬電距離。
- 產(chǎn)品的安規(guī)器件重點(diǎn)注意,比如變壓器磁性與原副邊關(guān)系;
- 散熱器與周邊距離問題,散熱器接的地不一樣絕緣情況也不一樣,接大地還是冷地,熱地絕緣也布一樣。
- 保險的距離特別注意,要求最嚴(yán)格地方。保險絲前后距離布一致。
- Y電容與漏電流,接觸電流關(guān)系。
后續(xù)會詳細(xì)說明距離該怎么留,如何做好安規(guī)要求。
六、PCB設(shè)計(jì)之電源布局
- 首先衡量PCB尺寸與器件數(shù)量,做到疏密有致,要不然一塊密,一塊稀疏很難看。
- 將電路模塊化,以核心器件為中心,關(guān)鍵器件優(yōu)先放的原則一次放置器件。
- 器件呈垂直或水平防置,一是美觀,二是方便插件作業(yè),特殊情況可以考慮傾斜。
- 布局時需要考慮到走線,擺放到最合理位置方便后續(xù)走線。
- 布局時盡可能減小環(huán)路面積,四大環(huán)路后面會詳解到。
做到上述幾點(diǎn),當(dāng)然要靈活運(yùn)用,比較合理的布局很快就會誕生。
下面是我畫的第一塊處女PCB板,好多年前的事情,當(dāng)時非常的艱苦完成的,中間可能有小問題,不過大體布局還是值得學(xué)習(xí)的:
此圖功率密度還是比較高,其中LLC的控制部分,輔助源部分以及BUCK電路驅(qū)動(大功率多路輸出)部分在小板上,就沒拿出來,看看主功率方面的布局特點(diǎn)吧:
1.輸入輸出端子是固定死的,不能動,板子是長方形的,主功率流向如何去選擇?
這里采用由下至上,由左及右的方式來布局,散熱是依靠外殼。
2.EMI電路還是清晰的流向,這點(diǎn)很重要,要不混亂了不美觀也對EMC不好。
3.大電容的位置盡量考慮到了PFC環(huán)路以及LLC主功率環(huán)路;
4.副邊的電流比較大,為了走電流,以及整流管散熱,采用了這樣的布局,整流管在上,BUCK電路MOS管在下,散熱分散效果好;大功率的頂層一般走負(fù),底層走正。
每個板子有自己的特點(diǎn),當(dāng)然也有自己的難處,如何合理解決是關(guān)鍵,大家從中能理解布局合理選取的含義嗎?
七、PCB實(shí)例賞析
可以根據(jù)之前談?wù)摰腜CB布局要點(diǎn),檢視此板,是否做的很到位,我認(rèn)為是做到比較好的地方了,當(dāng)然瑕疵總會有,也可以提出來,單面板如此緊湊能做到這樣已實(shí)屬不易了,可以借此板學(xué)習(xí)討論!后面還會針對此板講解學(xué)習(xí),大家先欣賞下。
八、PCB設(shè)計(jì)之四大環(huán)路認(rèn)識:(PCB布局的基本要求就是四大環(huán)路面積?。?/strong>
補(bǔ)充一下,吸收環(huán)路(RCD吸收以及MOS管的RC吸收,整流管的RC吸收)也很重要,也是產(chǎn)生高頻輻射的環(huán)路,對上圖有任何疑問,都?xì)g迎討論,不怕任何質(zhì)疑,只要是針對問題的質(zhì)疑,一起討論學(xué)習(xí)才能更大的進(jìn)步!
九、PCB設(shè)計(jì)之熱點(diǎn)(浮動電位點(diǎn))及地線:
注意事項(xiàng):
- 針對熱點(diǎn),一定要特別注意(高頻開關(guān)點(diǎn)),是高頻輻射點(diǎn),布局走線對EMC影響很大。
- 熱點(diǎn)構(gòu)成的環(huán)路小,走線短,并且走線不是越粗越好,而是夠走電流夠用就好。
- 地線要單點(diǎn)接地。主功率地和信號地分開,采樣地單獨(dú)走。
- 散熱器的地需要接主功率地。
十、EMC整改心得體會
均為個人理解,或許與傳統(tǒng)資料教材有差異,請自己斟酌,反正我覺得很多通用的教材結(jié)果沒我自己總結(jié)的使用,自夸了。想說的很多,可能有些亂,都是實(shí)踐出來的!
EMC產(chǎn)生以及測試時測得的結(jié)果如何去理解:簡單來說就是如何對癥下藥,很多情況拿到第一輪測試結(jié)果,怎么將結(jié)果和電源去對照分析;主題思路如下:
1、針對傳導(dǎo),測試范圍標(biāo)準(zhǔn)15K-30M,常見的EN55022是150K起。傳導(dǎo)的源頭是怎么產(chǎn)生的呢?針對低頻,主要是開關(guān)頻率以及其倍頻(后續(xù)有圖解),這種從源頭是無法解決的,開關(guān)頻率是無法消除的,當(dāng)然你可以改變開關(guān)頻率,那也只是將測試結(jié)果移動了,并沒有真正意義上消除。只能通過濾波器來解決,一般來說對于低頻采用R10K這種高磁通材質(zhì)有很好的效果,磁環(huán)大小跟你功率有關(guān)系,一般達(dá)到10MH感量,甚至更大到20MH,配合Y電容一般能很好解決,低頻不是難點(diǎn);真正的難點(diǎn)是高頻,個人認(rèn)為,高頻的起因就復(fù)雜多了,有開關(guān)導(dǎo)致,有變壓器可能,也有電感的可能,也就就是一切存在開關(guān)狀態(tài)的地方都可能存在(怎么判斷具體位置,后續(xù)講解),這里需要一番摸索;找到源頭未必源頭能解決,可能有改善,還是的配合濾波器。針對高頻,采用低磁通材質(zhì),如鎳鋅環(huán),感量一般都是UH級別的,配合合適Y電容(比較復(fù)雜的電源,建議布板時多留幾個Y電容位置,方便整改);
2、一些配合手段,很多教材都提到增大X電容判斷差模還是共模,有一定意義可能現(xiàn)實(shí)幫助不大,設(shè)計(jì)時一般我們X電容都會放到合適的值。并且增大X電容就能解決差模問題,也是瞎扯,所以很多教材都是提供一定意義指導(dǎo),個人覺得沒什么用。我覺得比較好的手段有幾個:1.對照接地和不解地總結(jié)差異,不接地可能更差,原因是系統(tǒng)構(gòu)造的傳導(dǎo)途徑少了;也可能有改善,說明是通過地回路傳導(dǎo)到端口。具體解決措施,針對電路接地的點(diǎn)Y電容進(jìn)行調(diào)節(jié)以及加磁珠。2.在輸入端口套磁環(huán),若套低U環(huán)有改善,調(diào)節(jié)第一級濾波電感。3復(fù)雜的系統(tǒng)注意EMI電路的屏蔽措施。若措施都沒什么效果,反省PCB設(shè)計(jì),這方面在PCB設(shè)計(jì)中會講到。
3、針對輻射:必須找出源頭去解決,觀測第一次測試結(jié)果,若是30M附近超出,跟接地相關(guān),系統(tǒng)上找接地,并且要判斷測試時是否接地良好,有時候輸入線都有影響。2.40M-100M以內(nèi),一般是MOS管開通關(guān)斷引起,有時后為了現(xiàn)場不好直接判斷是開通還是關(guān)斷,可針對性整改觀測結(jié)果去驗(yàn)證(當(dāng)然這都得花錢,后續(xù)會講解如何用示波器去判斷,這可是密招)。3 100M以上多為二極管引起,整改二極管吸收電容,大功率的有的可能是同步整流,更改MOS管吸收環(huán)路,記住有時候調(diào)整C時還得配合R整改。
要說的太多,后續(xù)針對具體實(shí)例去補(bǔ)充吧,先手打這么多,反正我打的夠辛苦,能引起共鳴很難,畢竟每個人的整改經(jīng)歷差很多,就當(dāng)給新人朋友一些啟示吧,后續(xù)會舉例說明!
十一、布板走線之濾波電容走線
濾波電容的走線對濾波效果有至關(guān)重要的作用,走的不好,可能失去其應(yīng)有的濾波效果。
圖一是副邊整流濾波走法,使二個電容效果分?jǐn)偅苊獾诙€電容在整流回路中失效。
圖二:為輸出濾波電容走線,一定不要外掛(也就是被旁路掉),走的不好輸出紋波很差。
十二、LLC電路的布板與EMC
LLC電路大家最熟悉不過了,虛線圓圈是驅(qū)動電路,在電路設(shè)計(jì)時緊靠MOS管放置,也就是說IC提供的驅(qū)動只需要引二根線拉到驅(qū)動電路,驅(qū)動電路離MOS管近,避免被干擾(同時走線時也要注意驅(qū)動干擾到敏感信號,既是敏感信號也是干擾源);一旦驅(qū)動被干擾電源可想而知。
同理同步整流的MOS管驅(qū)動也要離同步整流管近,設(shè)計(jì)原理圖時像此圖這樣放就能很好理解,假如你將這電路給PCB工程師布板,他就很直觀如何布局走線,你若是畫得很亂,很多PCB工程師對電路理解得布透徹可能就容易布錯板。
另外:原邊有一個重要的環(huán)路,PFC電容與MOS管以及變壓器,諧振電感,諧振電容構(gòu)成的環(huán)路面積?。?/div>
副邊整流濾波環(huán)路同樣重要,電容的走線之前講過,也很重要;
走線時注意高低壓的距離,有些地方電壓是浮動的,必須當(dāng)作高壓來對待,比如上管驅(qū)動以及對應(yīng)的參考電壓。
至于EMC方面LLC的開通是軟開關(guān),開通對EMC幾乎沒有影響,重點(diǎn)關(guān)注是關(guān)斷速度的快慢對EMC影響;還有MOS管結(jié)電容并的電容對EMC影響很大,選擇電容不合適,或是不加(MOS管自身也有結(jié)電容)對EMC都可能有影響,這是重點(diǎn)注意的地方;此圖沒有Y電容,在MOS管正或者負(fù)防置Y電容也能很好濾去開關(guān)干擾;
對此電路有什么疑問的,可以提出來討論,在討論中彼此成長!
十三、電路設(shè)計(jì)與布板之PFC
上圖是典型的BOOST PFC電路:
左邊綠色方框部分是驅(qū)動電路,和之前LLC拓?fù)潋?qū)動一樣,離MOS就近放置,原理圖上就體現(xiàn)出來。
右邊綠色虛線方框部分,是MOS管關(guān)斷尖峰吸收電路,一樣與MOS管構(gòu)成環(huán)路要最??;
另外二大重要環(huán)路,一是MOS管開通環(huán)路(虛線紅色圖),另一個是MOS管關(guān)斷環(huán)路(實(shí)線紅色圖);環(huán)路面積盡可能?。?/div>
十四、磁環(huán)在EMC中妙用
有的產(chǎn)品EMC很難在源頭上去處理的,可以采用磁環(huán)濾波,當(dāng)然我這里說的磁環(huán)有二個層面的意思,一方面是輸入輸出端的濾波電感,采用不同材質(zhì)磁環(huán),不同匝數(shù)會有對應(yīng)的效果,還有一方面意思是直接在輸入輸出線上套磁環(huán),有時能起到妙用,但不是在所有場合都能用,起碼還是能作為判斷依據(jù);
上圖藍(lán)色和黑色線是輸出正負(fù)端,上面套了個磁環(huán),解決了輸出整流管引起的高頻端超出;有些時候端口的干擾在PCB板上加濾波器未必有效果,在輸出線上放磁環(huán)就有想不到的效果。
十五、PCB走線之關(guān)鍵信號
注意:
- CS信號(采樣信號):從采樣電阻R25,R26拉出,注意IC的地線以采樣電阻為基準(zhǔn),采樣電阻的正負(fù)差分走線拉倒IC CS腳以及IC 的GND腳。
- 驅(qū)動信號從驅(qū)動電路拉倒IC驅(qū)動引腳,注意不要干擾到CS腳;如圖走線三根線并排走,并且將地線走在驅(qū)動先和CS線中間起到一定屏蔽作用;
- 雙面板最好將IC一層鋪地屏蔽,鋪地的網(wǎng)絡(luò)一定要從IC GND引出,非關(guān)鍵信號GND可直接打過孔,關(guān)鍵信號地需要單點(diǎn)接地,直接接IC;
- FB反饋網(wǎng)絡(luò)信號注意查分走線并且單點(diǎn)接IC;
- RCD吸收網(wǎng)絡(luò)不要放在主回路;
- VCC的整流濾波地需要接主功率地,二級濾波可接IC 地;
- Y電容走線單獨(dú)接,不可與主功率混淆,避免干擾;
十六、主功率及控制部分地接線示意圖
可能很多人看到此圖,云里霧里的,大致介紹下:
- PFC的驅(qū)動和IC共地接PFC管,更具體點(diǎn)是接采樣電阻的地;
- DC-DC部分的驅(qū)動地和控制地接DC開關(guān)管部分的采樣地;
- 輔助源部分控制地接輔助源MOS管采樣第,MOS管地再接主功率地;
- 各自IC的供電地通過輔助源EC濾波接IC地,注意RC濾波靠近IC;
總結(jié):注意好各自的單點(diǎn)接地,地線不亂,是走線最重要的地方之一!??!
十七、電磁場屏蔽機(jī)理分析
圖一:磁場屏蔽原理
如圖對照:輸入和輸出的電場干擾可以通過電容傳輸耦合,若增加屏蔽板,則增加了C4的大小,并且C1也會減小,對電場干擾起到衰減的目的;
圖二:磁場屏蔽原理
如圖:磁場屏蔽的特點(diǎn)和磁場不一樣,需要外殼屏蔽,電場只需要平面屏蔽板,故散熱器屏蔽帶來的是電場屏蔽,有的采用外殼封閉式電源則起到了一定磁場屏蔽;
磁場屏蔽原理,磁場通過屏蔽罩會改變磁路,導(dǎo)致磁力線向周圍擴(kuò)散,中間磁場干擾達(dá)到屏蔽目的;
十八、開關(guān)器件與EMC
對器件的認(rèn)識對EMC也有著重要的意義,比如MOS管,主開關(guān)MOS是很重要的EMC源頭之一,還有整流管的開通以及關(guān)斷也會產(chǎn)生高頻輻射(原理是電流產(chǎn)生磁場,變化的電流產(chǎn)生電場);當(dāng)然這里主要是介紹半導(dǎo)體開關(guān)器件,其他的電感變壓器就不做說明了;
開關(guān)器件哪些參數(shù)對EMC有重要影響,我們常說快管,慢管是以什么作為參照的呢?我們都知道快管開通損耗小,為了做高效率都喜歡用,但是為了EMC順利通過,不得不舍棄效率,降低開關(guān)速度來減弱開關(guān)輻射;
對于MOS管,開通速度是由驅(qū)動電阻與輸入結(jié)電容決定的;關(guān)斷速度是由輸出結(jié)電容與管子內(nèi)阻決定;
參照以上兩圖,是不同型號的MOS管,對比下輸入結(jié)電容和輸出結(jié)電容,2400PF與800PF;780PF與2200PF;一看就知道第一個規(guī)格是快管,第二個是慢管,這時候決定開關(guān)速度還要與驅(qū)動電阻匹配;常規(guī)情況驅(qū)動電阻在10R-150R比較多,選取驅(qū)動電阻與結(jié)電容有關(guān),針對快板驅(qū)動電阻可適當(dāng)增大,慢管驅(qū)動電阻可適當(dāng)減?。?/div>
對于二極管,有肖特基二極管,快回復(fù)二極管,普通二極管,還有一種用的比較少的SIC二極管,開關(guān)速度SIC二極管幾乎為零,等于是沒有反向恢復(fù),開關(guān)輻射最小,并且損耗也最小,唯一的缺點(diǎn)就是價格昂貴,故很少用;其次就是肖特基二極管,正向壓降低,反向恢復(fù)時間短,依次是快回復(fù)和普通二極管;需要在損耗和EMC之間折中;一般可采取改吸收以及套磁珠等措施整改EMC;
十九、EMC之濾波器
濾波器的架構(gòu)選擇對濾波器的影響很重要,在不同場合,濾波器是根據(jù)阻抗匹配來達(dá)到濾波效果,大家可根據(jù)此圖的原則參考選取如何濾波;比如最常用的輸出整流橋后采用π型濾波以及輸出端采用LC濾波器;
濾波器的材質(zhì)對設(shè)計(jì)濾波電感也是至關(guān)重要,采用不同初始磁導(dǎo)率的材質(zhì)會在不同頻率段起作用,選錯材質(zhì)就完全失去應(yīng)有的效果;
二十、EMC之反激高頻等效模型分析
先從最簡單的模型理解EMC:
EMC的路徑,當(dāng)然空間輻射是跟環(huán)路有關(guān),環(huán)路也是路徑構(gòu)造成的;分析出反激高頻等效模型,幫助理解EMC形成的機(jī)理;我們的測試接收設(shè)備會從L,N端接收傳導(dǎo),為了減小接收的干擾,就必須讓干擾通過地回路流通而不從L,N端口流向接收設(shè)備;這時候我們的EMI電感以及Y電容通過阻抗匹配就可以實(shí)現(xiàn);另外原邊的干擾可以通過原副邊Y電容,變壓器雜散電容以及大地耦合到副邊,形成更多的回路;當(dāng)然一些結(jié)電容參數(shù),如MOS管結(jié)電容,散熱器結(jié)電容也能構(gòu)成流通路徑;
二十一、輻射的形式以及頻率分布
這個圖可能有些抽象,不過正好EMC是很難做到具體,需要給到我們一些啟示,可知:差模輻射是以環(huán)路的形式存在,而共模輻射是以天線的形式發(fā)射;因此正好印證前面說我們布板的時候開關(guān)環(huán)路的布局以及走線的時候不要走銳角,常規(guī)走45度,最好是圓弧走線,當(dāng)然走線效率會比較低;
這些原理基礎(chǔ)知識理解得好,對實(shí)際處理EMC工作以及布板很有用那個,如果沒這種意識,可能毫無用處,因?yàn)樘峁┎涣酥苯臃椒ǎ枰c其他知識想結(jié)合;
而且這里提的很多原理東西,在很多EMC資料中是看不到的,而且也沒這么集中,需要反復(fù)體會!
如圖:一些頻率端與開關(guān)電源產(chǎn)生部位的關(guān)系,這只是一般規(guī)律,不要完全相信;既是規(guī)律又不能盡信是為什么?規(guī)律并不是在所有情況下成立,不同電源的差異也很大,所以原理是幫你分析,而不是按照方法去硬套;
二十二、EMC實(shí)例
根據(jù)傳導(dǎo)實(shí)例,頻率的分布點(diǎn)關(guān)鍵是具體的數(shù)據(jù)與基頻之間的關(guān)系,這個測試完后,需要揣測這些數(shù)值的規(guī)律,可能能發(fā)現(xiàn)什么蛛絲馬跡;當(dāng)然對于這些頻率如何通過濾波器去解決的手段前面也說過了;
這里是給大家補(bǔ)充一些似乎很神秘的EMC它是怎么來的,感覺不再神秘,而不只是稀里糊涂的采用濾波器解決了問題!
推薦閱讀:
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測器應(yīng)用與測試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會2024激發(fā)創(chuàng)新,推動智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎分享供應(yīng)鏈挑戰(zhàn)下的自我成長
- 上海國際嵌入式展暨大會(embedded world China )與多家國際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro
友情鏈接(QQ:317243736)
我愛方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線檢測 芯片查詢 天天IC網(wǎng) 電子產(chǎn)品世界 無線通信模塊 控制工程網(wǎng) 電子開發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動化設(shè)備 企業(yè)查詢 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉