電路算法
談到電磁場(chǎng)的算法,不要把場(chǎng)的算法和路的方法搞混,當(dāng)然也有場(chǎng)路結(jié)合的方法。電路算法主要針對(duì)線性無(wú)源集總元件和非線性有源器件組成的網(wǎng)絡(luò),采用頻域 SPICE和純瞬態(tài)電路方程方法進(jìn)行仿真。這類仿真的特性是無(wú)需三維實(shí)體模型、線性和非線性器件時(shí)域或頻域模型(SPICE和IBIS等)、仿真速度快、 電壓電流的時(shí)域信號(hào)和頻譜為初級(jí)求解量。
電路仿真簡(jiǎn)稱路仿真,主要用于端口間特性的仿真,就是說(shuō)當(dāng)端口內(nèi)的電磁場(chǎng)對(duì)網(wǎng)絡(luò)外其他部分沒(méi)有影響或者影響可以忽 略時(shí),則可以采用路仿真;采用路仿真的必要條件是電路的物理尺寸遠(yuǎn)小于波長(zhǎng)。換言之,當(dāng)電路板的尺寸可以和電路上最高頻率所對(duì)應(yīng)的波長(zhǎng)相比擬時(shí),則必須使 用電磁場(chǎng)理論對(duì)該電路板進(jìn)行分析。
舉例說(shuō)明,一塊PCB尺寸為10*10cm,工作的最高頻率是3GHz,3GHz對(duì)應(yīng)的真空波長(zhǎng)是10cm,此時(shí)PCB 的尺寸也是10cm,則我們必須使用電磁場(chǎng)理論對(duì)此板進(jìn)行分析,否則誤差將很大,而無(wú)法接受。一般工程上,PCB的尺寸是工作波長(zhǎng)的1/10時(shí),就需要采 用電磁場(chǎng)理論來(lái)分析了。對(duì)于上面的那塊板子,當(dāng)板上有300MHz的信號(hào)時(shí),就需要場(chǎng)理論來(lái)析了。
、
電子產(chǎn)品設(shè)計(jì)中,對(duì)于不同的結(jié)構(gòu)和要求,可能會(huì)用到不同的電磁場(chǎng)求解器。電磁場(chǎng)求解器(Field Solver)以維度來(lái)分:2D、2.5D、3D;逼近類型來(lái)分:靜態(tài)、準(zhǔn)靜態(tài)、TEM波和全波。
它需要三維結(jié)構(gòu)模型。所謂“準(zhǔn)靜”就是指系統(tǒng)一定支持靜電場(chǎng)和穩(wěn)恒電流存在,表現(xiàn)為靜電場(chǎng)和靜磁場(chǎng)的場(chǎng)型,更精確地講,磁通變化率或位移電流很小,故在麥克 斯韋方程組中分別可以忽略B和D對(duì)時(shí)間的偏導(dǎo)項(xiàng),對(duì)應(yīng)的麥克斯韋方程分別被稱之為準(zhǔn)靜電和準(zhǔn)靜磁。由此推導(dǎo)出的算法就被稱之為準(zhǔn)靜電算法和準(zhǔn)靜磁算法。這 類算法主要用于工頻或低頻電力系統(tǒng)或電機(jī)設(shè)備中的EMC仿真。如:變流器母線與機(jī)柜間分布參數(shù)的提取便可采用準(zhǔn)靜電磁算法完成。對(duì)于高壓絕緣裝置顯然可采 用準(zhǔn)靜電近似,而大電流設(shè)備,如變流器、電機(jī)、變壓器等,采用準(zhǔn)靜磁算法是較可取的。
[page]
2、全波電磁算法
簡(jiǎn)單地講就是求解麥克斯韋方程完整形式的算法。全波算法又分時(shí)域和頻域算法。有限差分法(FD)、有限積分法(FI)、傳輸線矩陣法(TLM)、有限元法 (FEM)、邊界元法(BEM)、矩量法(MoM)和多層快速多極子法(MLFMM)均屬于全波算法。所有的全波算法均需要對(duì)仿真區(qū)域進(jìn)行體網(wǎng)格或面網(wǎng)格 分割。
前三種方法(FD、FI和TLM法)主要是時(shí)域顯式算法,且稀疏矩陣,仿真時(shí)間與內(nèi)存均正比于網(wǎng)格數(shù)一次方;后四種方法(FEM、BEM、MoM和 MLFMM)均為頻域隱式算法。FEM也為稀疏矩陣,仿真時(shí)間和內(nèi)存正比于網(wǎng)格數(shù)的平方;而BEM和MoM由于是密集矩陣,所以時(shí)間與內(nèi)存正比是網(wǎng)格數(shù)的 三次方。FD、FI、TLM和FEM適用于任意結(jié)構(gòu)任意介質(zhì),BEM和MoM適用于任意結(jié)構(gòu)但須均勻非旋介質(zhì)分布,而MLFMM則主要適用于金屬凸結(jié)構(gòu), 盡管MLFMM具有超線性的網(wǎng)格收斂性,即大家熟知的NlogN計(jì)算量。
全波算法又稱低頻或精確算法,它是求解電磁兼容問(wèn)題的精確方法。對(duì) 于給定的計(jì)算機(jī)硬件資源,此類方法所能仿真的電尺寸有其上限。一般來(lái)說(shuō),在沒(méi)有任何限制條件下,即任意結(jié)構(gòu)任意材料下,TLM和FI能夠仿真的電尺寸最 大,其次是FD,再者為FEM,最后是MoM和BEM。若對(duì)于金屬凸結(jié)構(gòu)而言,MLFMM則是能夠仿真電尺寸最大的全波算法。
時(shí)域算法的固 有優(yōu)勢(shì)在于它非常適用于超寬帶仿真。
電磁兼容本身就是一個(gè)超寬帶問(wèn)題,如國(guó)軍標(biāo)GJB151A RE102涉及頻段為10kHz直至40GHz六個(gè)量級(jí)的極寬頻帶。另外,對(duì)于瞬態(tài)電磁效應(yīng)的仿真,如強(qiáng)電磁脈沖照射下線纜線束上所感應(yīng)起來(lái)的瞬態(tài)沖擊電 壓的仿真,采用時(shí)域算法是自然、高效、準(zhǔn)確的。
3、2D求解器
2D 求解器是最簡(jiǎn)單和效率最高的,只適合簡(jiǎn)單應(yīng)用。例如,2D靜態(tài)求解器可以提取片上互連線橫截面的電容參數(shù)。2D準(zhǔn)靜態(tài)求解器可以提取均勻多導(dǎo)體傳輸線橫截 面上單位長(zhǎng)度低頻RLGC參數(shù)。2D全波求解器可以提取均勻多導(dǎo)體傳輸線橫截面上的全頻RLGC參數(shù)。典型的2D全波計(jì)算方法有:2D邊界元法、2D有限 差分法、2D有限元法。
4、2.5D求解器
2.5D 的概念是20世紀(jì)80年代Rautio在美國(guó)雪城大學(xué)攻讀博士期間提出的,當(dāng)時(shí)他在Roger教授手下做GE電子實(shí)驗(yàn)室支助下做平面MOM算法的研究。在 那個(gè)年代,人們只有2D電流(XY方向)和3D電磁場(chǎng)的概念。GE電子實(shí)驗(yàn)室的人比較關(guān)注電流,稱其為2D,而Roger教授關(guān)注是電磁場(chǎng),并稱之為3D 的。Rautio和這兩個(gè)團(tuán)隊(duì)都有合作,當(dāng)時(shí),他正在讀一本關(guān)于分形理論的書,書里清晰定義了分維度的概念,于是,Rautio得到啟發(fā),提出2.5D的 概念,這也是分形維度理論第一次被用到電磁場(chǎng)領(lǐng)域。
“2.5D solver”的意思是,這個(gè)solver使用的是全波公式,公式中包含多層介質(zhì)中的6個(gè)電磁場(chǎng)分量(XYZ方向電場(chǎng)E和XYZ方磁場(chǎng)H),以及2個(gè)傳導(dǎo) 電流分量(如X和Y方向)。其利用多層介質(zhì)的全波格林函數(shù),采用矩量法的步驟,將一個(gè)3D問(wèn)題縮減為金屬表面問(wèn)題。這樣就不需要對(duì)整個(gè)三維空間劃分網(wǎng)格, 只需要在金屬表面劃分網(wǎng)格即可。此外,2.5D意味著傳輸線的金屬厚度被忽略,這種做法對(duì)線寬大于金屬厚度的平面電路結(jié)構(gòu)(PCB應(yīng)用)可以很好地近似, 甚至可以說(shuō)半解格林函數(shù)的精度在計(jì)算多層介質(zhì)結(jié)構(gòu)方面比一般3D solver還要高。
考慮了金屬厚度并包含Z方向傳導(dǎo)電流的2.5D solver稱作為3D平面算法。這里的3D的意思是這個(gè)solver可以用作多層介質(zhì)的公司來(lái)求解一些3D結(jié)構(gòu),比如傳輸線或者過(guò)孔。但是 Bondwire是不可以用這種方法來(lái)做的,全波意味著輻射被考慮在公式里面,或者說(shuō),置換電流分量被考慮在Maxwell方程組里面。
2.5D TEM求解器適合用于結(jié)構(gòu)中以TEM模式為主的情況,即在電磁場(chǎng)傳播方向沒(méi)有電場(chǎng)和磁場(chǎng)分量,工作頻率比較低的電源平面對(duì)結(jié)構(gòu)符合這一情況。但是,3D效應(yīng),共平面設(shè)置或缺少參考平面的設(shè)計(jì)都會(huì)降低這種方法的精度。
2.5DBEM/MOM 求解器是一種全波求解器,它基于邊界元法或矩量法公式,利用層狀介質(zhì)格林函數(shù)來(lái)求解,通常假設(shè)介質(zhì)層數(shù)無(wú)窮大的平面。但是,對(duì)于封裝和封裝-電路板連接處 存在的3D邊緣效應(yīng),3D幾何結(jié)構(gòu)和有限大介質(zhì)層精度不高。代表軟件Ansys Designer,MicroWave Office,IE3D, Feko,Sonnet。
5、3D求解器
3D準(zhǔn)靜態(tài)求解器適合芯片-封裝-電路板系統(tǒng)中出現(xiàn)大多數(shù)3D結(jié)構(gòu),但對(duì)低頻有效,高頻結(jié)果誤差較大,如果結(jié)構(gòu)較大,計(jì)算時(shí)間會(huì)很長(zhǎng),消耗內(nèi)存也比較大。
3D 全波求解器是最能準(zhǔn)確模型實(shí)際情況的求解器。它可以模擬RF、SI、PI、EMI等所涵蓋的所有效應(yīng),典型的3D全波求解器有:邊界元法 (Si9000)、有限差分法(CST、Keysight EMpro/FDTD)和有限元法(Ansys HFSS、Keysight Empro/ FEM)。
[page]
Ansys Siwave
是專門最大封裝和PCB的信號(hào)完整性和電源完整性分析平臺(tái),使用電路和全波電磁場(chǎng)的混合求解器,可以完成直流分析,交流分析和電磁輻射分析。SIWAVE使用優(yōu)化后的三維電磁場(chǎng)有限元求解技術(shù),適合精確快速分析大規(guī)模復(fù)雜電源,地平面的PCB和封裝設(shè)計(jì)。
Cadence Sigrity
Cadence Sigrity采用多種混合算法,包括電磁場(chǎng)(EM)求解器,傳輸線(TLM)求解器,電路(SPICE)求解器, 如板間主電磁場(chǎng)采用FEM有限元法(POWER SI)或FDTD時(shí)域有限差分法(SPEED2000),傳輸線采用矩量法,非理想回路和過(guò)孔采用局部三維等效法,板邊輻射采用邊界元法等。
隨著系統(tǒng)數(shù)據(jù)率進(jìn)入了Gbps和無(wú)線頻率進(jìn)幾GHz領(lǐng)域,考慮非均勻互連的不連續(xù)性帶來(lái)的影響變得越來(lái)越重要。主要有兩類最基本的互連不連續(xù):PCB上不規(guī) 則形狀的互連對(duì)象,如:過(guò)孔、走線拐角、非均勻走線;IC以及PCB之間的互連結(jié)構(gòu)。過(guò)去,對(duì)電路板上的均勻走線和封裝使用靜態(tài)或準(zhǔn)靜態(tài)場(chǎng)解算器進(jìn)行建 模。那些尺寸小、不規(guī)則形狀的對(duì)象都采用近似或直接忽略的方式處理,這樣的方法對(duì)于沿速率相對(duì)較慢的信號(hào)的建模與仿真已經(jīng)足夠了。
但是,對(duì)于吉比特級(jí)的系 統(tǒng),特別是對(duì)于那些數(shù)據(jù)率超過(guò)了5Gbps的信號(hào),電路板和封裝的細(xì)微結(jié)構(gòu)造成的不連續(xù)性將顯著影響信號(hào)的質(zhì)量,這將引起眼圖的閉合并帶來(lái)不可接受的誤碼 率。因此,對(duì)于吉比特級(jí)系統(tǒng)的分析,需要引入三維電磁場(chǎng)全波分析技術(shù)。
CST印制板工作室
CST 印制板分析軟件基于積分方程和邊界元(BEM)的算法,能快速準(zhǔn)確地從PCB結(jié)構(gòu)得到電路仿真用的傳輸線電路(TLC)模型及部分元件等效電路 (PEEC)模型,可以輸出標(biāo)準(zhǔn)SPICE集總模型(R,L,C,G)或者SPICE分布模型(Z,V,T)以及特殊的仿真模型(比如:HSpice W-model)。 使用軟件內(nèi)建的功能強(qiáng)大的二維場(chǎng)求解器以及高級(jí)網(wǎng)絡(luò)仿真器,可以非常容易地處理任何類型的EMC問(wèn)題。內(nèi)置的仿真器會(huì)自動(dòng)考慮趨膚效應(yīng)、介質(zhì)損耗。
此外,CST印制板分析軟件還將產(chǎn)品公差分析或電介質(zhì)完全地考慮到諸如信號(hào)完整性、輻射或串?dāng)_等EMC計(jì)算中。其高效的內(nèi)核可以分析從非常小的結(jié)構(gòu)(比如:?jiǎn)我恍盘?hào)線)到復(fù)雜整板。
求解原理及優(yōu)點(diǎn):
CST 印制板分析軟件是為滿足行業(yè)用戶對(duì)于電磁兼容性、信號(hào)完整性和功率完整性效應(yīng)的建模和仿真而開發(fā)的復(fù)雜印制板系統(tǒng)分析軟件。它為業(yè)界提供了完整的PCB板 級(jí)、部件級(jí)及系統(tǒng)級(jí)的電磁兼容性、信號(hào)完整性及功率完整性分析解決方案??梢苑治鰡螌印⒍鄬訌?fù)雜PCB板的信號(hào)完整性(SI)、電源完整性(PI)、 PCB板對(duì)外的輻射及外界環(huán)境對(duì)PCB板的影響等等,還可以給出整板的電流分布和SPICE模型等。軟件主要功能特點(diǎn)如下:
(1)、時(shí)域及頻域算法;
(2)、2D邊界元法(BEM)和2.5D部分單元等效電路法(PEEC)提取Layout的分布參數(shù)網(wǎng)絡(luò)模型;
(3)、基于SPICE模型快速仿真包含走線、無(wú)源RLC器件、IC模塊及各類非線性器件整板的信號(hào)完整性和各器件上的電壓和電流,并得出PCB板上的電流幅相分布;
(4)、將PCB上電流導(dǎo)入CST MWS或CST MS進(jìn)行包含有機(jī)箱機(jī)殼等整個(gè)系統(tǒng)環(huán)境下的電磁輻射仿真;
(5)、與CST MWS或CST MS聯(lián)合完成在整個(gè)系統(tǒng)環(huán)境受到外界電磁輻照時(shí)PCB板上的感應(yīng)電壓和電流。
HyperLynx
HyperLynx SI提供三維電磁場(chǎng)建模與仿真功能,在Linesim中集成HyperLynx 3D EM三維電磁場(chǎng)仿真引擎,能夠在“前端”實(shí)現(xiàn)三維過(guò)孔物理結(jié)構(gòu)電磁建模 ,提供Boardsim與HyperLynx 3D EM的接口,能夠提取復(fù)雜PCB結(jié)構(gòu)的3D模型,從而實(shí)現(xiàn)精確的三維電磁場(chǎng)建模與仿真。
隨著射頻應(yīng)用頻率和速率越來(lái)越高,以及計(jì)算機(jī)技術(shù)的發(fā)展,早期的2D求解器基本不能滿足現(xiàn)代產(chǎn)品的設(shè)計(jì)需要,大部分商業(yè)軟件都會(huì)采用全波3D算法,這是一個(gè) 趨勢(shì)??偟膩?lái)說(shuō),沒(méi)有一個(gè)求解器或軟件適合所有應(yīng)用,應(yīng)該針對(duì)不同結(jié)構(gòu)和電路特點(diǎn)選擇。選擇一個(gè)求解器和仿真軟件,除了考慮求解對(duì)象幾何維度,還行確認(rèn)那 些特殊效應(yīng)需要仿真,這些效應(yīng)是如何被模擬的。我經(jīng)常說(shuō)的一句話“沒(méi)有最好的PCB仿真軟件,只有最適合的仿真軟件”。
相關(guān)閱讀:
傳統(tǒng)印刷電路板PCB模擬方法,利大于弊?
畫PCB布線時(shí)必須掌握的技巧要領(lǐng)
PCB精講:陶瓷電容器中的顫噪