表2.10 放大器壓擺率與靜態(tài)電流
放大器靜態(tài)功耗,輸出級(jí)晶體管功耗與熱阻的影響評(píng)估
發(fā)布時(shí)間:2021-03-14 責(zé)任編輯:lina
【導(dǎo)讀】放大器參數(shù)的性能通常會(huì)受溫度影響,而溫度的變化來源包括環(huán)境溫度波動(dòng),以及芯片自身總功耗和散熱能力限制。其中放大器的總功耗包括靜態(tài)功耗、輸出級(jí)晶體管功耗,本篇將討論二者與熱阻參數(shù)對(duì)溫度影響的評(píng)估方法。
放大器參數(shù)的性能通常會(huì)受溫度影響,而溫度的變化來源包括環(huán)境溫度波動(dòng),以及芯片自身總功耗和散熱能力限制。其中放大器的總功耗包括靜態(tài)功耗、輸出級(jí)晶體管功耗,本篇將討論二者與熱阻參數(shù)對(duì)溫度影響的評(píng)估方法。
靜態(tài)電流與靜態(tài)功耗
靜態(tài)電流(Quiescent current,Iq),也稱為供電電流(Supply Current, Isy)是指單個(gè)放大器不帶負(fù)載(Iout為0)時(shí),放大器內(nèi)部所消耗的電流。
通常放大器靜態(tài)電流大小與壓擺率呈正相關(guān)關(guān)系。如《深究|為什么放大器壓擺率會(huì)受到輸入端大信號(hào)的限制?》中所述,壓擺率限制是發(fā)生在放大器內(nèi)部放大級(jí)米勒補(bǔ)償電容Cc的充電電流Ic達(dá)到飽和時(shí)。所以Ic越大壓擺率越高,需要的靜態(tài)電流越大。如表2.10,列舉部分精密放大器的壓擺率與靜態(tài)電流的典型值。
表2.10 放大器壓擺率與靜態(tài)電流
靜態(tài)電流還會(huì)受到溫度的影響。如圖2.180為ADA4807靜態(tài)電流與溫度關(guān)系,供電電源分別為±1.5V、±2.5V、±5V時(shí),靜態(tài)電流都隨溫度上升而變大。
圖2.180 ADA4807靜態(tài)電流與溫度
靜態(tài)功耗(Quiescent Power,Pq)是指放大器輸出不驅(qū)動(dòng)負(fù)載時(shí),內(nèi)部電路所消耗的功耗,如式2-100。
其中,Vsy為放大器的供電范圍,即Vcc與Vee之差。
如圖2.4,25℃環(huán)境中,ADA4077使用±15V供電,靜態(tài)電流的典型值為400μA。代入式2-99,通過計(jì)算靜態(tài)功耗為12mW。使用LTspice進(jìn)行瞬態(tài)分析之后,計(jì)算ADA4077靜態(tài)功率如圖2.181。
圖2.181 ADA4077靜態(tài)功耗仿真電路
功率計(jì)算結(jié)果如圖2.182,ADA4077靜態(tài)功耗的平均值為10.84mW,接近ADA4077靜態(tài)功耗的計(jì)算值。
圖2.182 ADA4077瞬態(tài)分析的靜態(tài)功率計(jì)算結(jié)果
短路電流、輸出電流與輸出級(jí)晶體管功耗
短路電流(Short-Circuit Current,Isc)定義為放大器輸出與地、電源的兩個(gè)端電壓之一或者特定電位短接時(shí),放大器可以輸出的最大電流值。
輸出電流(Output Current,Iout)定義為放大器輸出端所取出的電流值。輸出電流值必須小于短路電流值,放大器才能工作正常。放大器輸出電流有兩種形式,分別是流出電流“Source”為正值,與灌入電流“sink”為負(fù)值。二者參數(shù)值可以不相等,如圖2.160, ADA4807流出電流50mA,灌入電流為60mA。
圖2-160 ADA4807輸出特性
輸出級(jí)晶體管功耗定義為放大器在指定輸出電流Iout網(wǎng)絡(luò)中,放大器內(nèi)部所消耗的功耗。如圖2.183。
圖2.183 放大器直流功耗分析電路
放大器流出的電流Iout,為式2-101。
放大器自身消耗的電壓落差,為式2-102。
通過式2-101與式2-102,計(jì)算輸出級(jí)晶體管功耗,為式2-103。
其中,RL為放大器輸出端的等效電阻,阻值為R1與Rf阻值之和,與負(fù)載電阻Rload的并聯(lián)值。
如圖2.183,根據(jù)電路配置可知Vout為1V,RL為1.333KΩ,代入是2-102計(jì)算ADA4077直流功耗為10.5mW。
熱 阻
芯片熱阻定義為熱量在從晶圓結(jié)點(diǎn)傳導(dǎo)至環(huán)境空氣遇到的阻力。表示為θJA,即結(jié)至環(huán)境熱阻,單位是℃/W。進(jìn)一步分析晶圓結(jié)點(diǎn)至環(huán)境空氣熱傳導(dǎo)過程,如圖2.185。
圖2.185 芯片熱力學(xué)模型
PN節(jié)總功耗(Pd)導(dǎo)致溫度上升將向芯片的封裝進(jìn)行熱傳遞,過程中遇到的阻力為節(jié)至外殼的熱阻θJC。外殼溫度上升將周圍環(huán)境進(jìn)行熱傳遞,過程中遇到的阻力為外殼至環(huán)境的熱阻θCA。散熱過程如式2-104。
如圖2.186,ADA4077不同封裝的節(jié)至外殼的熱阻,外殼至環(huán)境的熱阻。
圖2.186 ADA4077不同封裝熱阻
如果在室溫25℃條件下,選擇8-Lead MSOP封裝ADA4077實(shí)現(xiàn)圖2.183電路,輸出級(jí)晶體管功耗為10.5mW,靜態(tài)功耗為12mW,θJC為44℃/W,θCA為190℃/W,代入式2-104計(jì)算芯片內(nèi)部結(jié)溫為:
如上,精密測(cè)量電路的放大器功耗影響通常較小,而高速采集電路的放大器與ADC功耗較大,影響就不能忽視,需要根據(jù)應(yīng)用電路具體分析。另外,不論是精密測(cè)量,還是高速采集電路,還應(yīng)考慮板卡中電源,主控等高功耗芯片對(duì)電路工作溫度的影響,才能確保所使用的參數(shù)與硬件實(shí)際工作環(huán)境相符合。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長(zhǎng)
- 上海國(guó)際嵌入式展暨大會(huì)(embedded world China )與多家國(guó)際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲(chǔ)器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro