如何調(diào)節(jié)MAX2009/MAX2010 RF預(yù)失真器來優(yōu)化系統(tǒng)性能?
發(fā)布時間:2020-08-21 責(zé)任編輯:lina
【導(dǎo)讀】類似于 WCDMA 的線性調(diào)制方案能夠支持較高的數(shù)據(jù)速率,每個載波允許多個無線連接,但會造成載波信號較高的峰均比。與恒包絡(luò)調(diào)制不同(恒包絡(luò)調(diào)制中允許 PA (功率放大器)采用小尺寸),目前應(yīng)用中的放大器必須采用較大的散熱面積,以滿足鄰信道泄漏的要求。
類似于 WCDMA 的線性調(diào)制方案能夠支持較高的數(shù)據(jù)速率,每個載波允許多個無線連接,但會造成載波信號較高的峰均比。與恒包絡(luò)調(diào)制不同(恒包絡(luò)調(diào)制中允許 PA (功率放大器)采用小尺寸),目前應(yīng)用中的放大器必須采用較大的散熱面積,以滿足鄰信道泄漏的要求。PA 效率的下降同樣需要 PA 占用較大的散熱面積,需要采用線性化技術(shù)以最小的 IM (互調(diào))實現(xiàn)最高效率。
眾所周知的線性化技術(shù),例如:前饋(FFW)和數(shù)字預(yù)失真(DPD),費用昂貴且需要相當(dāng)大的空間。這就需要尋求一種元件數(shù)量少、易于操作的方法。
與 FFW 或 DPD 相比,MAX2009/MAX2010 模擬 RF 預(yù)失真器需要非常少的外部元件,易于調(diào)節(jié),并且具有相當(dāng)大的線性范圍。
MAX2009/MAX2010 依靠 RF 頻率下的 AM-AM 和 AM-PM 曲線校準(zhǔn)提高 IM3 和 ACPR 性能。芯片內(nèi)部測量信號功率,并將相位和增益預(yù)失真為電流信號幅度的函數(shù)。盡管 AM-AM 和 AM-PM 校準(zhǔn)采用無記憶電路,AB 類放大器仍然能夠從 Maxim®器件產(chǎn)生的負(fù)失真信號中獲益,顯著地改善系統(tǒng)性能。
與所有線性化技術(shù)一樣,采用好的信號削波算法能夠在 PA 之前降低信號的峰均比(沒有超過 EMV 限制),有助于模擬預(yù)失真。MAX2009/MAX2010 配合適當(dāng)?shù)男盘栂鞑ǚ桨改軌颢@得最佳性能。
預(yù)失真器原理
對于指定的正弦 RF 輸入,RF 頻率下放大器的壓縮失真通常類似于圖 1。預(yù)失真器對輸入信號進行失真處理,以抵消放大器造成的失真。結(jié)果得到凈線性傳輸函數(shù)。
圖 1. 幅值失真?zhèn)鬏敽瘮?shù)
相位失真操作幾乎相同。大多數(shù)放大器都傾向于隨著幅度的增大而增大輸入信號延時。這意味著輸出信號的相位隨幅度的增大而減小。預(yù)失真器的相位調(diào)整則相反,將延時作為幅度的函數(shù),隨幅度增大而減小。最終形成一個固定延時的傳輸函數(shù)。
圖 2. 相位失真?zhèn)鬏敽瘮?shù)
上圖所示為 VIN/VOUT 瞬態(tài)特性。對于 RF 放大器來說,即使可能實現(xiàn),也非常困難。對于一個無記憶系統(tǒng),通過簡單繪制 AM-AM 和 AM-PM 曲線圖,可完全描述放大器的非線性特性。圖 3 所示為 AM-AM 和 AM-PM 曲線示例。輸入信號為單頻率,x 軸表示輸入功率,AM-AM 和 AM-PM 曲線分別表示增益的幅值和相位。注意,相位壓縮在幅度壓縮之前進行,這一點對于選擇正確的模擬預(yù)失真方法非常重要。
圖 3. AM-AM 和 AM-PM 曲線
任何實際使用的放大器都具有一定程度的非線性,這種非線性可通過泰勒級數(shù)展開,表示成非線性傳輸函數(shù):
VOUT = K0 + K1VIN + K2VIN² + K3VIN³ + ... + KNVINN
偶次諧波遠(yuǎn)離基波,其系數(shù)數(shù)值很小可忽略不計,諧波分量的幅值隨著諧波次數(shù)的增大而減小。所以,大多數(shù)情況下利用 3 次和 5 次諧波即可準(zhǔn)確地描述實際的非線性放大器。根據(jù)所要求的線性度的不同,高階項在有些情況下可能非常重要。K3、K5、…等系數(shù)越大,放大器的非線性越嚴(yán)重,AM-AM 和 AM-PM 曲線偏離理想直線越遠(yuǎn)。對于任何類型的放大器,預(yù)失真的目的都是盡可能改善系統(tǒng)的 AM-AM 和 AM-PM 曲線,從而將不希望的交調(diào)產(chǎn)物降至最小。
放大器預(yù)失真的準(zhǔn)備工作
MAX2009/MAX2010 的典型功能是擴展相位和增益,以補償放大器的相位和增益壓縮。這個過程相當(dāng)于線性映射,功率管壓縮曲線的每個點都對應(yīng)于一個相位和增益修正值。實際應(yīng)用中,放大器在一定程度上受記憶效應(yīng)的影響。與其它半導(dǎo)體器件一樣,功率管特性隨溫度變化,由于功率放大器的效率受限,大多數(shù)功率被轉(zhuǎn)化為熱量。這種能量轉(zhuǎn)換對應(yīng)于幾個不同的時間常數(shù)。整個放大器變熱需要幾分鐘,晶體管封裝變熱需要幾秒鐘,而一個 LDMOS 通道發(fā)熱的時間則是微秒級的¹。所以,若一個信號包絡(luò)的功率變化非???,例如 WCDMA,有效通道的溫度將不再保持恒定,而是隨調(diào)制信號變化。這就造成了記憶效應(yīng)。若只是簡單重啟,由于放大器驅(qū)動從峰值向下變化時通道溫度較高,會造成在沿壓縮曲線向上和向下驅(qū)動時的表現(xiàn)不同。對于 CDMA 信號,這會影響到后面的多個數(shù)據(jù)芯片,意味著較大的 EVM 和互調(diào)產(chǎn)物。
管理記憶效應(yīng)
可以用不同方式表示記憶效應(yīng)(圖 4)。最直接的方法是使用自定義的 CDMA 編碼,使平均功率較低,并且兩個連續(xù)峰值具有相同的峰值功率。如果放大器的解調(diào)輸出信號顯示出不同幅度的峰值,則說明存在記憶效應(yīng)。
圖 4. 記憶效應(yīng)
一種常被用來識別放大器記憶效應(yīng)的方法是測量輸出頻譜。不相等的 IM 邊帶說明放大器存在記憶效應(yīng)(圖 5)。
圖 5. 放大器輸出頻譜說明存在記憶效應(yīng)
無記憶模擬預(yù)失真器只能改善失真的非記憶部分,因此必須優(yōu)化放大器以達(dá)到最小的記憶效應(yīng)。
造成記憶效應(yīng)的原因有多個,并非所有原因都能夠由電路設(shè)計人員左右。雖然很難降低 LDMOS 通道的發(fā)熱,但對包括所有驅(qū)動器的有源器件進行適當(dāng)散熱非常關(guān)鍵。
合理的電路設(shè)計能夠減輕記憶效應(yīng)的影響。為了避免載波調(diào)制引起電源電壓變化,有必要在調(diào)制帶寬范圍內(nèi)對電源進行濾波。
優(yōu)化最大增益時,通常要將輸入偏置匹配優(yōu)化于高阻抗,但這對非線性柵極電容影響較大。輕微的匹配失諧雖然降低了零點幾分貝的放大器增益,但可顯著改善記憶效應(yīng)。經(jīng)驗²表明:如果對放大器進行優(yōu)化,使其在超出信號帶寬的較寬頻率范圍內(nèi)保持平坦的傳輸特性,可有效降低記憶效應(yīng)。當(dāng)采用商用化 PA 測試板對 MAX2009 進行測試時,很難對測試板上的偏置電路進行改動。這時可讓測試板工作于一個非優(yōu)化頻率,或嘗試優(yōu)化在放大器工作帶寬的其它頻率。如果對于不同頻率,IM 邊帶形狀不同,則表明由于不合理的電路設(shè)計造成了記憶效應(yīng);如果 IM 的改善程度隨不同頻率而變化,則表明匹配電路設(shè)計不理想,還有很大的改進余地。
最后,驅(qū)動末級放大器的驅(qū)動器輸出阻抗也會帶來一定影響。如果采用了商業(yè)化驅(qū)動放大器的 EV (評估)板,評估板一般針對 50Ω負(fù)載進行優(yōu)化,實現(xiàn)較高增益和效率。但其輸出阻抗在所要求的頻率下一般并非“真正”的 50Ω。因此,最好利用網(wǎng)絡(luò)分析儀測量實際的驅(qū)動器輸出阻抗,采用并聯(lián)電容或電感重新匹配,將輸出阻抗的電抗分量優(yōu)化至最小。某些情況下,此舉能夠提高預(yù)失真器的 IM 改善程度。雖然基于設(shè)計經(jīng)驗,但該方法很有效。然而,多數(shù)情況下很難確定功放最后一級的輸入阻抗,因為實際測量中網(wǎng)絡(luò)分析儀要求的輸入功率過高。
AB 類放大器的預(yù)失真
目前,大多數(shù)使用非恒包絡(luò)調(diào)制的應(yīng)用(例如:WCDMA)都采用 AB 類放大器。因為這類放大器的效率比 A 類放大器高,并可滿足線性要求。
圖 6、圖 7 和圖 8 所示為帶有 LDMOS 驅(qū)動放大器的 AB 類 LDMOS PA 的輸出頻譜,利用 MAX2009 模擬預(yù)失真降低 ACPR 以及 IM3。
圖 6. POUT = 19W (Motorola® MW41C2230 和 MRF21085)時的輸出頻譜
測量條件(測量配置如圖 9 所示):
使用 3.84Mcps (3GPP)的雙載波 WCDMA 信號
PB_IN* = 1.46V
PF_S1/2* = 4.1V
PD_CS1* = 5V
PD_CS2* = 0V
*不同控制電壓的說明請參考 MAX2009/MAX2010 數(shù)據(jù)資料。
圖 7. POUT = 38W (Motorola MW41C2230 和 MRF5P21180)時的輸出頻譜
測量條件(測量配置如圖 9 所示):
使用 3.84Mcps (3GPP)的雙載波 WCDMA 信號
PB_IN = 1.52V
PF_S1/2 = 4.9V
PD_CS1 = 0V
PD_CS2 = 0V
圖 8. POUT = 19W (Motorola 21085)時的單載波輸出頻譜
測量條件(測量配置如圖 9 所示):
使用 3.84Mcps (3GPP)的單載波 WCDMA 信號
PB_IN = 1.6V
PF_S1/2 = 5.0V
PD_CS1 = 5V
PD_CS2 = 0V
圖 9 所示為實驗中使用的典型測量配置。
圖 9. 典型測量配置,請注意 ACPR 不包括 MAX2009 的失真,該失真可通過將 PB_IN 設(shè)置為 5V 使其最小。
如何正確調(diào)節(jié) MAX2009/MAX2010
本文介紹的調(diào)節(jié) MAX2009/MAX2010 的方法并不是唯一可行的方式,但實踐證明該方法速度非??欤夷軌蜻_(dá)到最佳結(jié)果。
第 1 步:將預(yù)失真器插入通道。相位部分,8dBm 至 12dBm 平均輸入功率,峰均比達(dá)到 10dB。僅連接相位部分,設(shè)置 PB_IN = 5V,關(guān)閉相位擴展。調(diào)節(jié)預(yù)失真器之后的增益 / 衰減,使 PA 具有正確的輸出功率。
第 2 步:測量注入主 PA 的 ACPR。它應(yīng)該比預(yù)失真器預(yù)計達(dá)到的目標(biāo) ACPR 至少高 3dB。
第 3 步:在標(biāo)稱斜率(PD_CS1 = 0V;PD_CS2 = 5V;PF_S1 = 5V)下,緩慢地向下調(diào)節(jié) PB_IN。將頻譜分析儀設(shè)置為快速掃描和低平均速率(均值 = 4)。降低 PB_IN 會加大預(yù)失真器產(chǎn)生的失真。調(diào)節(jié) PB_IN 以獲得最優(yōu)性能。如果沒有看到性能改善,則將 PB_IN 維持在性能開始劣化的位置。
如果沒有找到性能開始劣化或改善的 PB_IN,則說明預(yù)失真器的平均輸入功率太低,預(yù)失真器不能產(chǎn)生足夠高的失真。如果 PB_IN = 5V 時 ACPR 下降,則說明預(yù)失真器的平均輸入功率太高。
第 4 步:微調(diào) PF_S1 和 PB_IN 以獲得最佳性能。PF_S1 偏置變?nèi)荻O管并可能超過 5V。調(diào)節(jié)控制,使上邊帶和下邊帶獲得均等的 IM3/ACPR 性能。
如果在 PF_S1 > 5V 時獲得最佳性能,將 PD_CS2 改為 0V,使最優(yōu) PF_S1 電壓在 5V 范圍內(nèi)。
如果在 PF_S1 < 0.5V 時獲得最佳性能,將 PD_CS1 改為 5V,使最優(yōu) PF_S1 電壓大于 0.5V。因為 RF 信號會使變?nèi)荻O管導(dǎo)通,所以較低的 PF_S1 電壓不可取,會大幅降低性能。
第 5 步:調(diào)節(jié) PA 的直流偏置電壓進一步改善性能和效率。偏置電壓的改變會改變下邊帶 / 上邊帶功率之差和相位之差。這是獲得最佳性能的重要一步。
第 6 步:重復(fù)第 4 步和第 5 步,直到無法進一步改善性能為止。
相位部分具有一些與輸入功率相關(guān)的寄生增益擴展。這種寄生效應(yīng)可能有益,并且能夠提供更多改善。一旦找到了初始配置的最佳調(diào)節(jié),則用不同的平均輸入功率進行實驗,查看是否可獲得進一步的改善。但是,必須謹(jǐn)慎操作,確保平均輸入功率的改變不會降低所有前置驅(qū)動產(chǎn)生的 ACPR/IM3。
放大器的自熱會影響性能,須確保溫度穩(wěn)定后調(diào)節(jié)放大器。
如果沒有獲得改善或只是確認(rèn)預(yù)失真的結(jié)果,則應(yīng)測量放大器的壓縮效應(yīng)。由于連續(xù)兩個測量點之間增益掃描時間過長,不能使用網(wǎng)絡(luò)分析儀進行測量。對于如此緩慢的測量,放大器有足夠的時間適應(yīng)新的功率電平。實際上,由于調(diào)制包絡(luò)的原因,功率電平變化很快。若要描述實際工作條件下的放大器,必須通過使用激勵信號測量失真,該激勵信號呈現(xiàn)出與相應(yīng)的調(diào)制方案相同的峰均比和帶寬。Rohde & Schwarz³提供的 AMPTUNE 軟件工具包能夠?qū)嶋H工作條件下 PA 的壓縮特性進行測量。
圖 10 所示為 180W LDMOS 晶體管在采用 MAX2009 預(yù)失真器進行預(yù)失真前后的 AM-PM 特性(38W 輸出功率)。本例為 WCDMA 系統(tǒng),利用一個峰均比為 10dB 的 5MHz 帶寬噪聲信號作為激勵。
圖 10. 用 AMPTUNE 軟件³進行相位壓縮測量
注意,該軟件程序顯示了壓縮曲線以及計算擴展,這是對放大器進行線性化所必需的。
MAX2009/MAX2010 的其它應(yīng)用示例
MAX2009/MAX2010 將相位和增益作為信號幅值的一個函數(shù)進行擴展,從而補償放大器的壓縮效應(yīng)。并非必須在系統(tǒng)的最終頻率處進行優(yōu)化,也可以在 IF 級完成。這種方法將 MAX2009/MAX2010 的應(yīng)用范圍從 0.1GHz 擴展至 2.5GHz,適用于其它應(yīng)用,例如衛(wèi)星通信(圖 11)。
圖 11. 利用 MAX2009/MAX2010 在 IF 級進行預(yù)失真
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測器應(yīng)用與測試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會2024激發(fā)創(chuàng)新,推動智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實技術(shù)再獲獎分享供應(yīng)鏈挑戰(zhàn)下的自我成長
- 上海國際嵌入式展暨大會(embedded world China )與多家國際知名項目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
傳感器
傳感器模塊
船型開關(guān)
串聯(lián)電阻公式
創(chuàng)智成
磁傳感器
磁環(huán)電感
磁敏三極管
磁性存儲器
磁性元件
磁珠電感
存儲器
大功率管
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感