【導(dǎo)讀】高精度運(yùn)算放大器可讓系統(tǒng)設(shè)計(jì)人員能在調(diào)理信號(hào)(放大、濾波和緩沖)的同時(shí)保持原始信號(hào)的精度。當(dāng)信息包含在變動(dòng)極小的信號(hào)中時(shí),信號(hào)路徑上的運(yùn)算放大器在工作時(shí)具有極低的直流和交流誤差性能就顯得極為必要??傁到y(tǒng)精度取決于信號(hào)路徑的精度保持程度。
在某些應(yīng)用中,可能出現(xiàn)電源電壓以外的電壓驅(qū)動(dòng)運(yùn)算放大器 輸入的情況—這種情況稱為過(guò)壓情況。例如,假設(shè)運(yùn)算放大器配置為+15 V正電源和−15 V負(fù)電源,則無(wú)論何時(shí),只要輸入引 腳電壓大于一個(gè)二極管壓降+供電軌電壓(比如±15.7 V),則運(yùn)算放大器內(nèi)部ESD保護(hù)二極管就可以正向偏置,開(kāi)始傳導(dǎo) 電流。長(zhǎng)時(shí)間(甚至短時(shí)間內(nèi))的過(guò)量輸入電流—如果電流足夠高的話—便可能會(huì)損壞運(yùn)算放大器。這種損壞可能會(huì)導(dǎo) 致電氣規(guī)格參數(shù)偏離數(shù)據(jù)手冊(cè)所保證的限值,甚至導(dǎo)致運(yùn)算放大器永久性損壞。面對(duì)這種可能性,系統(tǒng)設(shè)計(jì)人員通常會(huì) 在放大器輸入端添加一個(gè)過(guò)壓保護(hù) (OVP) 電路。因此,難就難在引入OVP電路的同時(shí)不增加誤差(損失系統(tǒng)精度)。
過(guò)壓條件是如何發(fā)生的
很多不同的情況可能引起過(guò)壓條件??紤]一個(gè)遠(yuǎn)程傳感器位于現(xiàn)場(chǎng)的系統(tǒng)—比如煉油廠內(nèi)的液體流動(dòng),并將信號(hào)通過(guò)電纜發(fā)送至另一個(gè)物理地點(diǎn)的數(shù)據(jù)采集電子設(shè)備。數(shù)據(jù)采集電 子信號(hào)路徑的第一級(jí)通常是配置為緩沖器或增益放大器的運(yùn)算放大器。該運(yùn)算放大器的輸入暴露在外界環(huán)境下,因而可 能受過(guò)壓事件的影響—比如電纜損壞導(dǎo)致的短路,或者電纜與數(shù)據(jù)采集電子設(shè)備的錯(cuò)誤連接。
類似地,可能導(dǎo)致過(guò)壓條件的情形是:輸入信號(hào)(通常在放大器輸入電壓范圍內(nèi))突然接收到外部激勵(lì),導(dǎo)致瞬態(tài)尖峰超過(guò)運(yùn)算放大器的電源電壓。
可能導(dǎo)致輸入過(guò)壓條件的第三種情況來(lái)自運(yùn)算放大器和信號(hào)路徑上其它元件的上電時(shí)序。例如,如果信號(hào)源(比如傳感器)在運(yùn)算放大器之前上電,則信號(hào)源便可輸出電壓,而此 時(shí)運(yùn)算放大器電源引腳還沒(méi)有上電。這會(huì)導(dǎo)致過(guò)壓情況,有可能強(qiáng)制過(guò)量電流流經(jīng)運(yùn)算放大器輸入并到達(dá)接地端(未上 電電源引腳)。
箝位:一種經(jīng)典的過(guò)壓保護(hù)技術(shù)
圖1所示是一種OVP(過(guò)壓保護(hù))的常用方法。當(dāng)輸入信號(hào)(VIN) 幅度超過(guò)電源電壓之一加上二極管正向電壓,則二極管(DOVPP或DOVPN)將會(huì)正向偏置,電流將流至供電軌,過(guò)量電流可能會(huì)損壞運(yùn)算放大器。本應(yīng)用中, 我們使用了ADA4077—一款精度極高的運(yùn)算放大器,最大電源范圍為30 V(或±15 V)。
箝位二極管是1N5177肖特基二極管,因?yàn)樗鼈兊恼驅(qū)妷旱扔诖蠹s0.4 V,這比運(yùn)算放大器輸入靜電放電 (ESD) 保護(hù)二極管的正向?qū)妷旱?;因此,箝位二極管將在ESD二極管之前開(kāi)始傳導(dǎo)電流。過(guò)壓保護(hù)電阻ROVP限制了流過(guò)箝位二極管的正向電流,使其保持在最大電流額定值以下,防止受到過(guò)量電流的損害。使用反饋環(huán)路電阻RFB是因?yàn)椋噍斎肷系娜魏屋斎肫秒娏鞫紩?huì)流過(guò)ROVP而產(chǎn)生輸入電壓誤差—增加RFB值可消除誤差,因?yàn)樗鼤?huì)在反相輸入端產(chǎn)生一個(gè)相似的電壓。
圖1. 用于過(guò)壓保護(hù)的經(jīng)典箝位電路。
二極管箝位電路的權(quán)衡取舍—降低精度
雖然圖1中的經(jīng)典電路可以保護(hù)運(yùn)算放大器輸入端,但它會(huì)向信號(hào)路徑上引入大量誤差。精密放大器的輸入失調(diào)電壓(VOS)通常為微伏等級(jí)。例如,ADA4077在−40°C至+125°C的完整工作溫度范圍內(nèi)的最大VOS為35 μV。添加外部二極管和限流電阻會(huì)引入輸入失調(diào)誤差,該誤差經(jīng)常會(huì)比精密運(yùn)算放大器的固有失調(diào)大好幾倍。
反向偏置二極管具有反向漏電流,此漏電流從陰極流過(guò)陽(yáng)極。 2 模擬對(duì)話 50-05,2016 年5 月當(dāng)輸入信號(hào)電壓 (VIN) 在供電軌之間的時(shí)候,二極管DOVPP和DOVPN具有反向電壓。當(dāng)VIN為地電平時(shí)(輸入電壓范圍的中點(diǎn)),經(jīng)過(guò)DOVPN的反向電流大致等于經(jīng)過(guò)DOVPP的反向漏電流。然而,當(dāng)VCM變?yōu)榈仉娖揭陨匣蛞韵聲r(shí),其中一個(gè)二極管中流過(guò)的反向電流大于另一個(gè)二極管中流過(guò)的電流。例如,當(dāng)VCM等于運(yùn)算放大器輸入電壓范圍的最大值時(shí)—即離正電源2 V(或本電路中的13 V)時(shí),二極管DOVPN上的反向電壓為 28 V。查閱1N5177二極管的數(shù)據(jù)手冊(cè)可知,這可能會(huì)導(dǎo)致反向漏電流接近100 nA。當(dāng)反向漏電流從輸入信號(hào)端(VIN) 流過(guò)ROVP時(shí),它會(huì)在ROVP上造成電壓降,看上去就像信號(hào)路徑上 輸入失調(diào)電壓上升了。
另一個(gè)需要擔(dān)心的地方是,二極管反向漏電流隨溫度上升而呈指數(shù)上升,導(dǎo)致箝位OVP電路的失調(diào)電壓懲急劇上升。圖2是一個(gè)不帶外部過(guò)壓電路的運(yùn)算放大器,以此作為對(duì)照基準(zhǔn),該 圖顯示了ADA4077在−13 V至+13 V輸入電壓范圍內(nèi)的失調(diào)電壓測(cè)量值。在三個(gè)溫度下進(jìn)行測(cè)量:25°C、85°C和125°C。注 意在25°C時(shí),本測(cè)試中的ADA4077 VOS僅達(dá)到了6 μV;哪怕在125°C,VOS也只有大約20 μV。當(dāng)我們把外部箝位OVP電路加入同一個(gè)ADA4077器件,并在VIN端施加輸入電壓時(shí),可以看到如圖3所示的結(jié)果。在室溫下,VOS跳躍至30 μV—是單個(gè)ADA4077信號(hào)路徑誤差的5倍。在125°C時(shí),VOS超過(guò)15 mV—等于ADA4077 20 μV的750倍之多!精度下降了。
圖2. 輸入失調(diào)電壓與ADA4077輸入電壓的關(guān)系。
圖3. ADA4077添加OVP箝位電路后輸入失調(diào)電壓與輸入電壓 的關(guān)系。
在過(guò)壓條件時(shí),5 kΩ電阻很好地保護(hù)了箝位二極管和運(yùn)算放大器,但正常工作時(shí),若二極管在它兩端有漏電流產(chǎn)生,則會(huì)引入較多的失調(diào)誤差(更不要說(shuō)來(lái)自電阻的約翰遜噪聲了)。我們需要的是動(dòng)態(tài)輸入電阻,它在額定的輸入電壓范圍內(nèi)工作時(shí)具有低電阻,但在過(guò)壓條件下具有高電阻。
滿足要求的集成式解決方案
ADA4177 是一款高精度運(yùn)算放大器,集成過(guò)壓保護(hù)。集成式ESD二極管用作過(guò)壓箝位,保護(hù)器件。耗盡型FET位于ESD二極管之前,與各個(gè)輸入端串聯(lián)連接。它們具有動(dòng)態(tài)電阻,會(huì)隨著輸入電壓 (VCM) 超過(guò)電源電壓而增加。隨著輸入電壓上升,內(nèi)部FET的漏極-源極電阻 (RDSON) 增加,從而限制了跟隨電壓的上升而呈指數(shù)增長(zhǎng)的電流(參見(jiàn)圖4)。由于ADA4177在輸入端采用耗盡型FET,并且由于它不是一個(gè)串聯(lián)保護(hù)電阻,因此運(yùn)算放大器不會(huì)在電阻兩端產(chǎn)生箝位OVP電路那樣的失調(diào)電壓?jiǎn)栴}。
圖4. ADA4177輸入偏置電流隨過(guò)壓的增加而受限。
ADA4177輸入可耐受電源電壓以上最高32 V的電壓。它將過(guò)壓電流限制在10 mA至12 mA(典型值)范圍內(nèi),從而不使用任何外部元件即保護(hù)了運(yùn)算放大器。如圖5所示,哪怕在125°C 時(shí),該被測(cè)單元的失調(diào)電壓也只有40 μV。該值為箝位電路在此溫度下誤差值的3%都不到。精度性能得到了保留!
圖5. ADA4177采用集成式OVP時(shí)輸入失調(diào)電壓與輸入電壓的 關(guān)系。
這對(duì)系統(tǒng)性能而言意味著什么
分析輸入電壓的變化對(duì)信號(hào)路徑精度的影響時(shí),系統(tǒng)設(shè)計(jì)人員會(huì)考慮放大器的共模抑制比 (CMRR)。它表示輸出端能抑制多少共模輸入電壓(或者通過(guò)了多少)。由于運(yùn)算放大器通 常配置為提供輸入與輸出之間的增益,因此我們以輸入失調(diào)電壓變化為參照歸一化CMRR規(guī)格(即輸出變化除以放大器 閉環(huán)增益)。共模抑制比是一個(gè)正數(shù)值,以dB為單位,計(jì)算公式如下:
CMRR = 20 log (ΔVCM/ΔVOS)
從這個(gè)比值中可以看到,有必要保持VOS盡量低。ADA4177額定值在完整的工作溫度范圍內(nèi)保證具有125 dB最小CMRR限值。通過(guò)本實(shí)驗(yàn)中被測(cè)單元的測(cè)試結(jié)果可以計(jì)算并對(duì)比箝位 電路和ADA4177的CMRR。表1顯示了使用經(jīng)典箝位二極管電路時(shí)精度的極大損失,以及集成FET過(guò)壓保護(hù)的ADA4177的 出色CMRR性能。
表1. ADA4177與帶箝位二極管的分立式OVP的CMRR對(duì)比
推薦閱讀: