国产精品亚洲欧美一区麻豆_亚洲国产精品高清在线观看_ 国产一区二区在线观看app-亚洲国产成人久久综合野外-国产永久在线视频-国产va免费精品

你的位置:首頁 > 電路保護(hù) > 正文

ESD 電路保護(hù)必讀:設(shè)計方法與元器件參數(shù)選型

發(fā)布時間:2014-06-05 責(zé)任編輯:johnmu

【導(dǎo)讀】由于 IC 工藝技術(shù)節(jié)點變得越來越小,它也越來越容易受到 ESD 損壞的影響,不管是在制造過程還是在終端用戶使用環(huán)境下。器件級 ESD 保護(hù)并不足以在系統(tǒng)層面為 IC 提供保護(hù)。我們應(yīng)在系統(tǒng)級設(shè)計中使用獨立 TVS。在選擇某個 TVS 時,設(shè)計人員應(yīng)注意一些重要參數(shù),例如:VBR、RDYN、VCL 和電容等。

隨著技術(shù)的發(fā)展,移動電子設(shè)備已成為我們生活和文化的重要組成部分。平板電腦和智能手機觸摸技術(shù)的應(yīng)用,讓我們能夠與這些設(shè)備進(jìn)行更多的互動。它構(gòu)成了一個完整的靜電放電 (ESD) 危險環(huán)境,即人體皮膚對設(shè)備產(chǎn)生的靜電放電。例如,在使用消費類電子設(shè)備時,在用戶手指和平板電腦 USB 或者 HDMI 接口之間會發(fā)生 ESD,從而對平板電腦產(chǎn)生不可逆的損壞,例如:峰值待機電流或者永久性系統(tǒng)失效。

本文將為您解釋系統(tǒng)級 ESD 現(xiàn)象和器件級 ESD 現(xiàn)象之間的差異,并向您介紹一些提供 ESD 事件保護(hù)的系統(tǒng)級設(shè)計方法。

系統(tǒng)級ESD  vs  器件級ESD

IC 的 ESD 損壞可發(fā)生在任何時候,從裝配到板級焊接,再到終端用戶人機互動。ESD 相關(guān)損壞最早可追溯到半導(dǎo)體發(fā)展之初,但在 20 世紀(jì) 70 年代微芯片和薄柵氧化 FET 應(yīng)用于高集成 IC 以后,它才成為一個普遍的問題。所有 IC 都有一些嵌入式器 件級 ESD 結(jié)構(gòu),用于在制造階段保護(hù) IC 免受 ESD 事件的損壞。這些事件可由三個不同的器件級模型進(jìn)行模擬:人體模型 (HBM)、機器模型 (MM) 和帶電器件模型 (CDM)。HBM 用于模擬用戶操作引起的 ESD 事件,MM 用于模擬自動操作引起的 ESD 事件,而 CDM 則模擬產(chǎn)品充電/放電所引起的 ESD 事件。這些模型都用于制造環(huán)境下的測試。在這種環(huán)境下,裝配、最終測試和板級焊接工作均在受控 ESD 環(huán)境下完成,從而減小暴露器件所承受的 ESD 應(yīng)力。在制造環(huán)境下,IC 一般僅能承受 2-kV HBM 的 ESD 電擊,而最近出臺的小型器件靜電規(guī)定更是低至 500V。

盡管在廠房受控 ESD 環(huán)境下器件級模型通常已足夠,但在系統(tǒng)級測試中它們卻差得很遠(yuǎn)。在終端用戶環(huán)境下,電壓和 電流的ESD電擊強度要高得多。因此,工業(yè)環(huán)境使用另一種方法進(jìn)行系統(tǒng)級 ESD 測試,其由 IEC 61000-4-2 標(biāo)準(zhǔn)定義。器件級 HBM、MM和CDM 測試的目的都是保證 IC 在制造過程中不受損壞;IEC 61000-4-2規(guī)定的系統(tǒng)級測試用于模擬現(xiàn)實世界中的終端用戶ESD事件。

IEC 規(guī)定了兩種系統(tǒng)級測試:接觸放電和非接觸放電。使用接觸放電方法時,測試模擬器電極與受測器件 (DUT) 保持接觸。非接觸放電時,模擬器的帶電電極靠近 DUT,同 DUT 之間產(chǎn)生的火花促使放電。

表 1 列出了 IEC 61000-4-2 標(biāo)準(zhǔn)規(guī)定的每種方法的測試級別范圍。請注意,兩種方法的每種測試級別的放電強度并不相同。我們通常在4級(每種方法的最高官方標(biāo)稱級別)以上對應(yīng)力水平進(jìn)行逐級測試,直到發(fā)生故障點為止。

接觸放電和非接觸放電方法的測試電平
表 1 接觸放電和非接觸放電方法的測試電平

器件級模型和系統(tǒng)級模型有一些明顯的區(qū)別,表 2 列出了這些區(qū)別。表 2 中最后三個參數(shù)(電流、上升時間和電擊次數(shù))需特別注意:

電流差對于 ESD 敏感型器件是否能夠承受一次 ESD 事件至關(guān)重要。由于強電流可引起結(jié)點損壞和柵氧化損壞,8-kV HBM 保護(hù)芯片(峰值電流5.33A)可能會因 2-kV IEC 模型電擊(峰值電流 7.5A)而損壞。因此,系統(tǒng)設(shè)計人員不能把 HBM 額定值同 IEC 模型額定值混淆,這一點極為重要。

另一個差異存在于電壓尖峰上升時間。HBM 的規(guī)定上升時間為 25ns。IEC 模型脈沖上升時間小于 1ns,其在最初 3ns 消耗掉大部分能量。如果 HBM 額定的器件需 25ns 來做出響應(yīng),則在其保護(hù)電路激活以前器件就已被損壞。[page]

兩種模型在測試期間所用的電擊次數(shù)不同。HBM僅要求測試一次正電擊和一次負(fù)電擊,而 IEC 模型卻要求 10 次正電擊和 10 次負(fù)電擊??赡艹霈F(xiàn)的情況是,器件能夠承受第一次電擊,但由于初次電擊帶來的損壞仍然存在,其會在后續(xù)電擊中失效。圖 1 顯示了 CDM、HBM 和 IEC 模型的 ESD 波形舉例。很明顯,相比所有器件級模型的脈沖,IEC 模型的脈沖攜帶了更多的能量。
器件級模型與 IEC 系統(tǒng)級模型比較
表 2 器件級模型與 IEC 系統(tǒng)級模型比較

器件級和 IEC 模型的 ESD 波形
圖 1 器件級和 IEC 模型的 ESD 波形

TVS 如何實現(xiàn)系統(tǒng)ESD 保護(hù)

與 ESD 保護(hù)集成結(jié)構(gòu)不同,IEC 61000-4-2 標(biāo)準(zhǔn)規(guī)定的模型通常會使用離散式獨立瞬態(tài)電壓抑制二極管,也即瞬態(tài)電壓抑制器 (TVS)。相比電源管理或者微控制器單元中集成的 ESD 保護(hù)結(jié)構(gòu),獨立 TVS 成本更低,并且可以靠近系統(tǒng) I/O 連接器放置,如圖 2 所示。

系統(tǒng)級 TVS 布局
圖 2 系統(tǒng)級 TVS 布局

共有兩種 TVS:雙向和單向(參見圖 3)。TI TPD1E10B06 便是一個雙向 TVS例子,它可以放置在一條通用數(shù)據(jù)線路上,用于系統(tǒng)級 ESD 保護(hù)。正常工作狀態(tài)下,雙向和單向 TVS 都為一個開路,并在 ESD 事件發(fā)生時接地。在雙向 TVS 情況下,只要 D1 和 D2 都不進(jìn)入其擊穿區(qū)域,I/O 線路電壓信號會在接地電壓上下擺動。當(dāng) ESD 電擊(正或者負(fù))擊中 I/O 線路時,一個二極管變?yōu)檎蚱?,而另一個擊穿,從而形成一條通路,ESD 能量立即沿這條通路接地。在單向 TVS 情況下,只要 D2 和 Z1 都不進(jìn)入其擊穿區(qū)域,則電壓信號會在接地電壓以上擺動。當(dāng)正ESD電擊擊中I/O線路時,D1變?yōu)檎蚱茫鳽1 先于 D2 進(jìn)入其擊穿區(qū)域;通過 D1 和 Z1 形成一條接地通路,從而讓 ESD 能量得到耗散。當(dāng)發(fā)生負(fù) ESD 事件時,D2 變?yōu)檎蚱茫珽SD能量通過 D2接地通路得到耗散。由于 D1 和 D2 尺寸可以更小、寄生電容更少,單向二極管可用于許多高速應(yīng)用;D1 和 D2 可以“隱藏”更大的齊納二極管 Z1(大尺寸的原因是處理擊穿區(qū)域更多的電流)。

雙向和單向 TVS
圖 3 雙向和單向 TVS

[page]

系統(tǒng)級 ESD 保護(hù)的關(guān)鍵器件參數(shù)與選型


圖 4 顯示了 TVS 二極管電流與電壓特性的對比情況。盡管 TVS 是一種簡單的結(jié)構(gòu),但是在系統(tǒng)級 ESD 保護(hù)設(shè)計過程中仍然需要注意幾個重要的參數(shù)。這些參數(shù)包括擊穿電壓 VBR、動態(tài)電阻 RDYN、鉗位電壓 VCL 和電容。

TVS 二極管電流與電壓的關(guān)系
圖 4 TVS 二極管電流與電壓的關(guān)系

擊穿電壓:正確選擇 TVS 的第一步是研究擊穿電壓 (VBR)。例如,如果受保護(hù) I/O 線路的最大工作電壓 VRWM 為 5V,則在達(dá)到該最大電壓以前 TVS 不應(yīng)進(jìn)入其擊穿區(qū)域。通常,TVS 產(chǎn)品說明書會包括具體漏電流的 VRWM,它讓我們能夠更加容易地選擇正確的 TVS。否則,我們可以選擇一個 VBR(min) 大于受保護(hù) I/O 線路 VRWM 幾伏的 TVS。

動態(tài)電阻:ESD 是一種極速事件,也就是幾納秒的事情。在如此短的時間內(nèi),TVS 傳導(dǎo)接地通路不會立即建立起來,并且在通路中存在一定的電阻。這種電阻被稱作動態(tài)電阻 (RDYN),如圖 5 所示。

ESD 電流放電通路
圖 5 ESD 電流放電通路

理想情況下,RDYN 應(yīng)為零,這樣 I/O 線路電壓才能盡可能地接近 VBR;但是,這是不可能的事情。RDYN 的最新工業(yè)標(biāo)準(zhǔn)值為 1 Ω 或者 1 Ω 以下。利用傳輸線路脈沖測量技術(shù)可以得到 RDYN。使用這種技術(shù)時,通過 TVS 釋放電壓,然后測量相應(yīng)的電流。在得到不同電壓的許多數(shù)據(jù)點以后,便可以繪制出如圖6一樣的 IV 曲線,而斜線便為 RDYN。圖 6 顯示了 TPD1E10B06 的 RDYN,其典型值為 ~0.3 Ω。

TPD1E10B06 的 IV 特性
圖 6 TPD1E10B06 的 IV 特性

鉗位電壓:由于ESD是一種極速瞬態(tài)事件,I/O 線路的電壓不能立即得到箝制。如圖 7 所示,根據(jù) IEC 61000-4-2 標(biāo)準(zhǔn),數(shù)千伏電壓被箝制為數(shù)十伏。如方程式 1 所示,RDYN 越小,鉗位性能也就越好:

其中,IPP 為 ESD 事件期間的峰值脈沖電流,而 Iparasitic 為通過 TVS 接地來自連接器的線路寄生電感。

8Kv 接觸放電的 ESD 事件鉗位
圖 7 8Kv 接觸放電的 ESD 事件鉗位

把鉗位電壓波形下面的區(qū)域想像成能量。鉗位性能越好,受保護(hù)ESD敏感型器件在ESD事件中受到損壞的機率也就越小。由于鉗位電壓很小,一些TVS可承受IEC模型的8kV接觸式放電,但是“受保護(hù)”器件卻被損壞了。

電容:在正常工作狀態(tài)下,TVS為一個開路,并具有寄生電容分流接地。設(shè)計人員應(yīng)在信號鏈帶寬預(yù)算中考慮到這種電容。


要采購焊接么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉