- 電路的設計技術(shù)
- 抑制干擾源技術(shù)
- 產(chǎn)品平面轉(zhuǎn)化時EMC設計技術(shù)
- 地線設計技術(shù)
- 采取平面式或多點接地
- 采用罐型磁芯減小變壓器漏感的影響
- 通過緩沖電路延緩功率開關(guān)管的通斷過程
- 采用R、C吸收電路降低其電磁干擾的EMI電平
解決的關(guān)鍵技術(shù)
1電路的設計技術(shù)
通過EDA仿真,利用可靠性優(yōu)化和可靠性簡化技術(shù)設計電路參數(shù),著重解決如下問題。
①線路的自激振蕩:合理地選擇消振網(wǎng)絡,消除DC/DC變換器的R、L、C參數(shù)選取的不合理性引起的振蕩,減小EMI的電平。DC/DC電源由于工作在高頻開關(guān)狀態(tài),很容易形成高頻自激,有時反應為帶滿載時正常帶輕載時自激,有時反映為常溫時正常高溫或低溫時自激,因此元器件的選取、補償網(wǎng)絡的應用顯得尤為重要。
②紋波與噪聲的有效抑制:抑制的方法大致可以歸結(jié)為二類,即降低本身的紋波與噪聲和設計濾波電路。
為了抑制外來的高頻干擾,也為了抑制DC/DC變換器對外傳導干擾,通過在DC/DC變換器的輸入端、輸出端設計濾波電路,抑制共模、差模干擾,降低EMI電平。其中,C1、C2、C3為差模濾波電容,C4、C5為共模濾波電容,L1為共模扼流圈,L2為差模濾波電感。
為了減少DC/DC變換器通過輸入、輸出端傳導EMI,除了在輸入、輸出端采取LC濾波外,還在電源的輸入地到金屬外殼之間、輸出地到金屬外殼之間增加高頻濾波電容,以減少共模干擾的產(chǎn)生。但此處要注意電容耐壓要大于500V,以滿足產(chǎn)品隔離電壓的要求。
圖中,L1、C1組成的輸入濾波電路和L2、C2組成的輸出濾波電路能減少紋波電流的大小,從而減少通過輻射傳播的電磁干擾。濾波電容C1、C2采用多個電容并聯(lián),以減少等效串聯(lián)電阻,從而減小紋波電壓。C3、C4、C5、C6用于濾除共模干擾,其值不宜取大,以避免有較大的漏電流。
2抑制干擾源技術(shù)
DC/DC變換器的主要干擾源有高頻變壓器、功率開關(guān)管及整流二極管,為此逐一地采取措施。
①高頻變壓器
在開關(guān)電源中,變壓器在電路中起到電壓變換、隔離及能量轉(zhuǎn)化作用,其工作在高頻狀態(tài),初、次級將產(chǎn)生噪聲并形成電磁干擾EMI。當開關(guān)管關(guān)斷時,高頻變壓器漏感會產(chǎn)生反電動勢E=-Ldi/dt,其值與集電極的電流變化率(di/dt)成正比,與漏感量成正比,疊加在關(guān)斷電壓上,形成關(guān)斷電壓尖峰,從而形成傳導性電磁干擾。
變壓器在開關(guān)電源中是用來隔離和變壓的,但在高頻的情況下它的隔離是不完全的,變壓器層間的分布電容使開關(guān)電源中的高頻噪聲很容易在初次級之間傳遞。此外,變壓器對外殼的分布電容形成另一條高頻通道,從而使變壓器周圍產(chǎn)生的電磁波更容易在其他引線上耦合形成噪聲。因此,在設計中采取了以下措施。[page]
圖1濾波器的原理圖
為減小變壓器漏感的影響,采用初、次級交叉繞制的方法,并使其緊密耦合。盡可能采用罐型磁芯。由于罐型磁芯可以把所有的線圈繞組封在磁芯里面,因此具有良好的自我屏蔽作用,可以有效地減少EMI。
圖2輸入輸出濾波電路
為吸收上升沿和下降沿產(chǎn)生的過沖,并有可能造成的自激振蕩,在初、次級電路中增加R、C吸收網(wǎng)絡,以減少尖峰干擾。在調(diào)試時須仔細調(diào)整R、C的參數(shù),確保電阻R1的值在30~200Ω,電容C1的值在100~1000P之間,以免影響變壓器的效率。
②功率開關(guān)管
由于功率管工作于高頻通斷開關(guān)狀態(tài),將產(chǎn)生電磁干擾EMI。當開關(guān)管流過大的脈沖電流時,大體上形成了矩形波,含有許多高頻成分。由于開關(guān)電源使用的元件參數(shù)(如開關(guān)管的存儲時間、輸出級的大電流、開關(guān)整流管的反向恢復時間)均會造成回路瞬間短路,產(chǎn)生很大短路電流。
凡有短路電流的導線及這種脈沖電流流經(jīng)的變壓器和電感產(chǎn)生的電磁場都可形成噪聲源。開關(guān)管的負載是高頻變壓器,在開關(guān)管導通的瞬間,變壓器初級出現(xiàn)很大的涌流,造成尖峰噪聲。這個尖峰噪聲實際上是尖脈沖,輕者造成干擾,重者有可能擊穿開關(guān)管。因此,須采取以下措施。
優(yōu)化功率管的驅(qū)動電路設計。通過緩沖電路,可以延緩功率開關(guān)管的通斷過程。
采用R、C吸收電路,從而在維持電路性能不變的同時,降低其電磁干擾的EMI電平。
③整流二極管
整流二極管在關(guān)斷期,由于反向恢復時間會引起尖峰干擾。為減少這種電磁干擾,必須選用具有軟恢復特性的、反向恢復電流小的、反向恢復時間短的二極管。肖特基勢壘二極管是多數(shù)載流子導流,不存在少子的存儲與復合效應,因而也就會產(chǎn)生很小的電壓尖峰干擾,故采取以下措施。
●采用R1、C1組成旁路吸收網(wǎng)絡。
●采用多個肖特基并聯(lián)分擔負載電流,有效地抑制整流二極管形成的EMI電平。
3產(chǎn)品平面轉(zhuǎn)化時EMC設計技術(shù)
影響產(chǎn)品EMC的方面很多。除了在線路上進行優(yōu)化設計外,如何在基片有限的空間內(nèi)合理的安排元器件的位置以及導帶的布線,也將直接影響到電路中各元器件自身的抗干擾性和產(chǎn)品的電磁兼容性EMC指標。
①平面轉(zhuǎn)換設計規(guī)范
對于電源內(nèi)部高頻開關(guān)器件,如功率VMOS管、高頻變壓器、整流管等,應盡可能地減少其電路電流的環(huán)路面積,且不要與其他導帶長距離平行分布。
電源的輸入正端和地線應盡可能地靠近,以減小差模輻射的環(huán)路面積。
設計布線時走線盡量少拐彎,拐彎處一般取圓弧形,因為直角或夾角會產(chǎn)生電流突變,產(chǎn)生EMI干擾。導帶上的線寬不要突變,無尖刺毛邊。
[page]
導帶印制時應盡量采用高目數(shù)的印制網(wǎng),以便使線電流達到均衡。應選用電流噪聲系數(shù)較小、性能穩(wěn)定性較好的電阻漿料和導帶漿料,保證不會因為工藝參數(shù)的因數(shù)帶來新的干擾。
盡可能地加粗地線,若地線過細,接地電位則隨電流的變化而變化,致使電路的信號電平不穩(wěn),抗噪聲性能變壞。
圖3初級吸收網(wǎng)絡
②采用金屬全密封結(jié)構(gòu)進行封裝
屏蔽有兩個目的,一是限制內(nèi)部輻射的電磁能量泄漏出,二是防止外來輻射干擾進入該內(nèi)部區(qū)域。其原理是利用屏蔽體對電磁能量進行反射、吸收和引導。為了抑制開關(guān)電源產(chǎn)生的輻射,電磁騷擾對其他電子設備的影響,可完全按照對磁場屏蔽的方法來加工金屬外殼,然后將金屬外殼與系統(tǒng)的機殼和地連接為一體,就能對電磁場進行有效的屏蔽。
4地線設計技術(shù)
為降低接地阻抗,消除分布電容的影響而采取平面式或多點接地,利用一個導電平面作為參考地,需要接地的各部分就近接到該參考地上。為進一步減小接地回路的壓降,可用旁路電容減少返回電流的幅值。在低頻和高頻共存的電路系統(tǒng)中,還應分別將低頻電路、高頻電路、功率電路的地線單獨連接后,再連接到公共參考點上,如果有可能最好設計地線層。
為減小變壓器漏感的影響,采用初、次級交叉繞制的方法,并使其緊密耦合。盡可能采用罐型磁芯。由于罐型磁芯可以把所有的線圈繞組封在磁芯里面,因此具有良好的自我屏蔽作用,可以有效地減少EMI。
圖2輸入輸出濾波電路
為吸收上升沿和下降沿產(chǎn)生的過沖,并有可能造成的自激振蕩,在初、次級電路中增加R、C吸收網(wǎng)絡,以減少尖峰干擾。在調(diào)試時須仔細調(diào)整R、C的參數(shù),確保電阻R1的值在30~200Ω,電容C1的值在100~1000P之間,以免影響變壓器的效率。
②功率開關(guān)管
由于功率管工作于高頻通斷開關(guān)狀態(tài),將產(chǎn)生電磁干擾EMI。當開關(guān)管流過大的脈沖電流時,大體上形成了矩形波,含有許多高頻成分。由于開關(guān)電源使用的元件參數(shù)(如開關(guān)管的存儲時間、輸出級的大電流、開關(guān)整流管的反向恢復時間)均會造成回路瞬間短路,產(chǎn)生很大短路電流。
凡有短路電流的導線及這種脈沖電流流經(jīng)的變壓器和電感產(chǎn)生的電磁場都可形成噪聲源。開關(guān)管的負載是高頻變壓器,在開關(guān)管導通的瞬間,變壓器初級出現(xiàn)很大的涌流,造成尖峰噪聲。這個尖峰噪聲實際上是尖脈沖,輕者造成干擾,重者有可能擊穿開關(guān)管。因此,須采取以下措施。