功率因素校正電路PFC電感旁路二極管的作用
發(fā)布時(shí)間:2021-08-13 責(zé)任編輯:lina
【導(dǎo)讀】本文總結(jié)了功率因素校正電路PFC電感加旁路二極管作用的幾種不同解釋:減少主二極管的浪涌電流;提高系統(tǒng)抗雷擊的能力;減少開機(jī)瞬間系統(tǒng)的峰值電流,防止電感飽和損壞功率MOSFET。
摘 要
本文總結(jié)了功率因素校正電路PFC電感加旁路二極管作用的幾種不同解釋:減少主二極管的浪涌電流;提高系統(tǒng)抗雷擊的能力;減少開機(jī)瞬間系統(tǒng)的峰值電流,防止電感飽和損壞功率MOSFET。具體分析了輸入交流掉電系統(tǒng)重起動(dòng),導(dǎo)致功率MOSFET驅(qū)動(dòng)電壓降低、其進(jìn)入線性區(qū)而發(fā)生損壞,才是增加旁路二極管最重要、最根本的原因。給出了在這種模式下,功率MOSFET發(fā)生損壞的波形和失效形態(tài),同時(shí)給出了避免發(fā)生這種損壞的幾個(gè)方法。
0 前言
中大功率的 ACDC 電源都會(huì)采用有源功率因數(shù)校正PFC 電路 PFC 來提高其功率因數(shù),減少對(duì)電網(wǎng)的干擾。在 PFC 電路中,常用的結(jié)構(gòu)是 BOOST 電路,在實(shí)際的使用中,通常會(huì)加一個(gè)旁路的二級(jí)管,和輸入的電感并聯(lián)。關(guān)于旁路二級(jí)管的作用,眾說紛紜,不同的資料,不同的
工程師,都有不同的解釋,下面來逐個(gè)分析說明。
1、增加輸入電感旁路二級(jí)管作用的幾種理由
1.1 減少 PFC 的二極管 D1 的浪涌電流
功率因數(shù)校正電路所加的旁路二級(jí)管如圖 1 的 D2 所示,因?yàn)镈1是快速恢復(fù)二極管,抗浪涌電流的能力比較差,D2 是普通的二極管,承受浪涌電流的能力很強(qiáng),這種解釋似乎有一點(diǎn)道理,但是,在實(shí)際應(yīng)用中,如果不加旁路二級(jí)管 D2,D1 也很少因?yàn)槔擞侩娏靼l(fā)生損壞,因?yàn)檩敵龆O管 D1 和 PFC 電感串聯(lián),PFC 電感較大,電感固有的特性就是其電流不能突變,PFC 電感對(duì)輸入的浪涌電流具有限流作用,因此,旁路二級(jí)管 D2 的最主要作用不是為了保護(hù)輸出二極管 D1。
圖 1 :PFC 基本電路原理圖
1.2 提高系統(tǒng)通過雷擊測(cè)試的能力
在實(shí)際的應(yīng)用中,會(huì)經(jīng)常發(fā)現(xiàn) :相對(duì)而言,如果不加旁路二級(jí)管 D2,系統(tǒng)不容易通過雷擊測(cè)試,那么,這說明,加旁路二級(jí)管 D2,的確有提高系統(tǒng)通過雷擊測(cè)試的作用。
系統(tǒng)在雷擊測(cè)試的過程中,產(chǎn)生的能量通過浪涌電流的形式,經(jīng)過旁路二級(jí)管 D2,存儲(chǔ)到大的輸出電容。如果沒有旁路二級(jí)管 D2,那么這些浪涌電流就要流過 PFC電感,從而有可能導(dǎo)致 PFC 電感飽和 .
PFC 電感飽和,功率 MOSFET 開通時(shí),特別是在輸入正弦波的值峰點(diǎn)附近開通,就會(huì)產(chǎn)生非常大的峰值電流,因?yàn)榭刂?IC 的電流檢測(cè)通常有一定的延時(shí),PFC 電感飽和時(shí),產(chǎn)生的 di/dt 非常大,即使是電流檢測(cè)的延時(shí)時(shí)間非常小,也會(huì)導(dǎo)致非常大的峰值電流,導(dǎo)致功率MOSFET 因?yàn)檫^流而損壞。
1.3 減少開機(jī)瞬間峰值電流,防止 PFC 電感飽和而損壞功率 MOSFET
這種解釋的理由是 :在開機(jī)的瞬間,輸出大電容的電壓尚未建立,由于要對(duì)大電容充電,通過 PFC 電感的電流相對(duì)比較大,在電源開關(guān)接通的瞬間,特別是在輸入正弦波的峰值附近開通,在對(duì)輸出大電容充電過程中 PFC電感的瞬間峰值電流非常大,有可能會(huì)出現(xiàn)飽和,如果此時(shí) PFC 電路工作,流過功率 MOSFET 的瞬間峰值也電流大,從而損壞功率 MOSFET。
增加旁路二級(jí)管 D2 后,旁路二級(jí)管 D2 對(duì)輸出大電容充電,輸出電壓建立的比較早,PFC 電感能夠很快的進(jìn)行去磁工作,就可以減小流過 PFC 電感的電流,防止PFC 電感飽和,降低功率 MOSFET 的峰值電流,避免損壞功率 MOSFET。
這種解釋的理由并不完全有道理 :增加旁路二極管 D2,的確可以減小流過 PFC 電感和功率 MOSFET的峰值電流,但是,如果沒有旁路二極管 D2,功率MOSFET 開始工作時(shí),即使是在輸入正弦波的峰值附近開通功率 MOSFET,由于控制 IC 都具有軟起動(dòng)功能,功率 MOSFET 的占空比一開始不是工作在最大的狀態(tài),而是從最小值慢慢的增加, PFC 的過電流保護(hù)電路 OCP 也限制功率 MOSFET 工作的最大峰值電流。
軟起動(dòng)通常在輸出電壓正常后才結(jié)束,輸出電壓在軟起動(dòng)時(shí)間沒有結(jié)束的時(shí)候,已經(jīng)高于輸入電壓,在 PFC電感和功率 MOSFET 達(dá)到系統(tǒng)設(shè)定的最大工作電流之前,PFC 電感已經(jīng)進(jìn)入到去磁工作,PFC 電感很難進(jìn)入飽和或進(jìn)入深度的飽和。只要 PFC 電感的電流不走飛(飽和)或不深度走飛(深度飽和),那么,功率 MOSFET 的工作就是安全的。
2、增加輸入電感旁路二級(jí)管真正的作用
實(shí) 際 應(yīng) 用 發(fā) 現(xiàn), 不 加 旁 路 二 級(jí) 管, 如 果 功 率MOSFET 發(fā)生失效,那么,發(fā)生失效的條件通常是 :輸出滿負(fù)載,系統(tǒng)進(jìn)行老化測(cè)試、輸入掉電測(cè)試以及輸入AC 電源插拔的過程中。
在上述條件下,輸入電壓瞬態(tài)的降到為 0,由于輸出滿載,PFC 輸出大電容的電壓 VBUS 迅速降低到非常低的值,PFC 控制 IC 的 VCC 的電容大,VCC 的電流小,因此,VCC 的掉電速度遠(yuǎn)遠(yuǎn)小于 VBUS 的掉電速度,VCC 的掉電速度慢,高于 PFC 控制 IC 的 VCC 的UVLO,那么 PFC 控制 IC 仍然在工作,如表 1 為一款PFC 控制器的供電電壓 VCC 的特性,列出了 UVLO 電壓參數(shù)。實(shí)際工作中,輸入交流 AC 掉電時(shí),PFC 控制IC 的 VCC 電壓的工作波形如圖 2 所示。
表 1 :PFC 控制器的供電電壓參數(shù)
圖 2 :輸入交流 AC 掉電 PFC 控制 IC 的 VCC 電壓
當(dāng) VCC 的值比 UVLO 稍高一點(diǎn)時(shí),輸入電源 AC 再加電,PFC 控制 IC 沒有軟起動(dòng)過程直接工作,由于輸出電壓比較低,特別是在輸入正弦波峰值點(diǎn)附近開通功率MOSFET,PFC 電感和功率 MOSFET 的工作峰值電流非常大,如果電感的飽和電流余量不夠,或 PFC 的電流取樣電阻選取得過小時(shí),PFC 電感有可能發(fā)生飽和,功率 MOSFET 在大電流的沖擊下,就有可能發(fā)生損壞。
同時(shí),功率 MOSFET 的 VGS 電壓比較低,約等于PIC 控制 IC 的 VCC 的 UVLO 電壓,如果功率 MOSFET的飽和電流比較低,就有可能會(huì)進(jìn)入線性區(qū)工作,更容易導(dǎo)致功率 MOSFET 線性區(qū)工作而損壞。[1][2]
如果電流取樣電阻RS 在功率 MOSFET 的驅(qū)動(dòng)回路中,就是 PFC 控制 IC 的地,沒有直接連接到功率MOSFET 的源極 S,功率 MOSFET 的 VGS 實(shí)際電壓為 :
高峰值電流導(dǎo)致 RS 的壓降 VRS 變大,功率 MOSFET的 VGS 電壓會(huì)進(jìn)一步降低,更容易進(jìn)入線性區(qū)工作。
圖 3 :PFC 的電流取樣電路
系統(tǒng)環(huán)境的溫度升高時(shí),PFC 控制 IC 內(nèi)部圖騰柱上管的導(dǎo)通壓降會(huì)增加,VDR 電壓降低,VGS 電壓也會(huì)進(jìn)一步降低,增加功率 MOSFET 進(jìn)入線性區(qū)風(fēng)險(xiǎn)。
(a) 重起動(dòng)波形
(b) 重起動(dòng)放大波形
(c) 重起動(dòng)線性區(qū)波形
圖 4 :輸入交流 AC 掉電重起動(dòng)的波形
如圖 4 所示,從輸入交流 AC 掉電重起動(dòng)的波形,可以看到,功率 MOSFET 開通后,VDS 電壓沒有降到 0 時(shí),在比較高的電壓下就關(guān)斷,非常明顯的進(jìn)入到線性區(qū)工作。
功率 MOSFET 線性區(qū)失效形態(tài)如圖 5 所示。
圖 5 :PFC 功率 MOSFET 線性區(qū)失效形態(tài)
因此,加旁路二極管 D2 最主要的作用是 :在輸入掉電重起動(dòng)過程中,PIC 控制 IC 的 VCC 大于 UVLO,在沒有軟起動(dòng)的條件下,降低 PFC 電感和功率 MOSFET的最大峰值電流,從而防止功率 MOSFET 發(fā)生大電流的沖擊損壞,以及線性區(qū)工作損壞。
同時(shí),PFC 電感飽和電流的余量不夠,在大電流飽和時(shí),功率 MOSFET 更容易發(fā)生損壞。大電流導(dǎo)致電流取樣電阻 RS 的電壓降增加,溫度升高導(dǎo)致 PFC 控制 IC內(nèi)部圖騰柱上管的導(dǎo)通壓降會(huì)增加,都會(huì)進(jìn)一步降低實(shí)際VGS 驅(qū)動(dòng)電壓,增加功率 MOSFET 進(jìn)入線性區(qū)工作損壞的幾率。
3、防止功率 M O S F E T 大電流線性區(qū)工作損壞的方法
3.1 加旁路二級(jí)管 D2
輸入電源 AC 再加電時(shí),通過旁路二級(jí)管 D2 迅速的給輸出電壓充電,減小功率 MOSFET 的最大的導(dǎo)通時(shí)間,減小最大的工作峰值電流。
3.2 適當(dāng)增大 PFC 的電流取樣電阻 RS
增大 PFC 的電流取樣電阻,可以減小最大的工作峰值電流,但是要保證系統(tǒng)能夠在全電壓的范圍內(nèi)以及滿載條件下,能夠正常的工作和起動(dòng)。
3.3 校核 PFC 電感的飽和電流
設(shè)計(jì)中要確保 :PFC 電感的飽和電流大于電流取樣電阻所設(shè)定的最大電流值,同時(shí)要考慮到電流取樣電路的延時(shí),PFC 電感的飽和電流有一定的余量。
實(shí)際應(yīng)用中,很多工程師經(jīng)常不校核 PFC 電感的飽和電流和電流取樣電阻所設(shè)定的最大電流值的這種關(guān)系,OCP 過流保護(hù)就起不到真正的作用。
3.4 校核功率 MOSFET 的飽和電流
不同的 PFC 控制器,VCC 具有不同的 UVLO 值,檢 查 所 用 的 PFC 控 制 器 的 VCC 的 UVLO 值, 然 后,VGS=UVLO,校核功率 MOSFET 的 VGS=UVLO 的飽和電流 ID-VGS=UVLO,保證 ID-VGS=UVLO 大于電流取樣電阻所設(shè)定的最大電流值,同時(shí)具有一定的余量 ;而且,這個(gè)最大電流值是在實(shí)際最高工作結(jié)溫條件下的飽和電流。
超結(jié)結(jié)構(gòu)的高壓 MOSFET 的飽和電流通常比較低,隨著結(jié)溫的增大,其飽和電流降低,如圖 6 所示。[3][4][5]
圖 6 :超結(jié)高壓 MOSFET 的 轉(zhuǎn)移特性
PFC 控 制 器 的 VCC 的 UVLO 值 越 低, 功 率MOSFET 最高結(jié)溫的飽和電流越低,在上述的條件下,發(fā)生線性區(qū)失效的可能性越大。圖 6 轉(zhuǎn)移特性曲線非常詳細(xì)的給出功率 MOSFET 的飽和電流,特別是圖 6 中飽和電流和溫度曲線,非常重要。
設(shè)計(jì)的原則是 :功率 MOSFET 飽和電流 ID-UVLO >PFC 電感的飽和電流 > 取樣電阻設(shè)定的最大電流。在正常起動(dòng)過程中,為什么功率 MOSFET 沒有進(jìn)入線性區(qū)工作?因?yàn)椋谙到y(tǒng)起動(dòng)過程中,PFC 控制 IC 的VCC 的開始工作電壓高于 UVLO 電壓,所以,MOSFET不容易進(jìn)入線性區(qū)工作。
4、結(jié)論
(1)功率因素校正電路加旁路二極管最主要的作用是:在輸入交流掉電系統(tǒng)重起動(dòng)過程中,控制 IC 的 VCC 大于 UVLO,在沒有軟起動(dòng)的條件下,降低 PFC 電感和功率 MOSFET 的最大峰值電流,從而防止功率 MOSFET發(fā)生大電流的沖擊損壞,以及線性區(qū)工作損壞。
(2)防止功率 MOSFET 發(fā)生大電流線沖擊、線性區(qū)工作損壞的方法主要有 :適當(dāng)增大 PFC 的電流取樣電阻RS,校核功率 MOSFET 飽和電流、電感的飽和電流,并保證功率 MOSFET 飽和電流大于電感的飽和電流,電感的飽和電流大于取樣電阻設(shè)定的最大電流,同時(shí)有一定的設(shè)計(jì)裕量。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長(zhǎng)
- 上海國(guó)際嵌入式展暨大會(huì)(embedded world China )與多家國(guó)際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索