基于無刷直流電機(jī)端電壓的換相控制電路設(shè)計(jì)
發(fā)布時(shí)間:2020-03-03 責(zé)任編輯:lina
【導(dǎo)讀】永磁無刷直流電機(jī)由于其無換向火花、運(yùn)行可靠、維護(hù)方便、結(jié)構(gòu)簡(jiǎn)單、無勵(lì)磁損耗等眾多優(yōu)點(diǎn),自 20 世紀(jì) 50 年代出現(xiàn)以來,就在很多場(chǎng)合得到越來越廣泛的應(yīng)用。傳統(tǒng)的永磁無刷直流電機(jī)均需一個(gè)附加的位置傳感器,用以向逆變橋提供必要的換向信號(hào)。
永磁無刷直流電機(jī)由于其無換向火花、運(yùn)行可靠、維護(hù)方便、結(jié)構(gòu)簡(jiǎn)單、無勵(lì)磁損耗等眾多優(yōu)點(diǎn),自 20 世紀(jì) 50 年代出現(xiàn)以來,就在很多場(chǎng)合得到越來越廣泛的應(yīng)用。傳統(tǒng)的永磁無刷直流電機(jī)均需一個(gè)附加的位置傳感器,用以向逆變橋提供必要的換向信號(hào)。它的存在給直流無刷電機(jī)的應(yīng)用帶來很多不便:首先,位置傳感器會(huì)增加電機(jī)的體積和成本;其次,連線眾多的位置傳感器會(huì)降低電機(jī)運(yùn)行的可靠性,即便是現(xiàn)在應(yīng)用最為廣泛的霍爾傳感器,也存在一定程度的磁不敏感區(qū);再次,在某些惡劣的工作環(huán)境中,如在密封的空調(diào)壓縮機(jī)中,由于制冷劑的強(qiáng)腐蝕性,常規(guī)的位置傳感器根本就無法使用;此外,傳感器的安裝精度還會(huì)影響電機(jī)的運(yùn)行性能,增加生產(chǎn)的工藝難度。
針對(duì)位置傳感器所帶來的種種不利影響,近一二十年來,永磁無刷直流電機(jī)的無位置傳感器控制一直是國(guó)內(nèi)外較為熱門的研究課題。從 20 世紀(jì) 70 年代末開始,截至目前為止,永磁無刷直流電機(jī)的無位置傳感器控制已大致經(jīng)歷了 3 個(gè)發(fā)展階段,針對(duì)不同的電機(jī)性能和應(yīng)用場(chǎng)合出現(xiàn)了不同的控制理論和實(shí)現(xiàn)方法,如反電勢(shì)法、續(xù)流二極管法、電感法等。
所謂的無位置傳感器控制,正確的理解應(yīng)該是無機(jī)械的位置傳感器控制,在電機(jī)運(yùn)轉(zhuǎn)的過程中,作為逆變橋功率器件換向?qū)〞r(shí)序的轉(zhuǎn)子位置信號(hào)仍然是需要的,只不過這種信號(hào)不再由位置傳感器來提供,而應(yīng)該由新的位置信號(hào)檢測(cè)措施來代替,即以提高電路和控制的復(fù)雜性來降低電機(jī)的復(fù)雜性。所以,目前永磁無刷直流電機(jī)無位置傳感器控制研究的核心和關(guān)鍵就是架構(gòu)一轉(zhuǎn)子位置信號(hào)檢測(cè)線路,從軟硬件兩個(gè)方面來間接獲得可靠的轉(zhuǎn)子位置信號(hào),借以觸發(fā)導(dǎo)通相應(yīng)的功率器件,驅(qū)動(dòng)電機(jī)運(yùn)轉(zhuǎn)。
1 、傳統(tǒng)反電動(dòng)勢(shì)檢測(cè)方法
無刷直流電機(jī)中,受定子繞組產(chǎn)生的合成磁場(chǎng)的作用,轉(zhuǎn)子沿著一定的方向轉(zhuǎn)動(dòng)。電機(jī)定子上放有電樞繞組,因此,轉(zhuǎn)子一旦旋轉(zhuǎn)就會(huì)在空間形成導(dǎo)體切割磁力線的情況。根據(jù)電磁感應(yīng)定律可知,導(dǎo)體切割磁力線會(huì)在導(dǎo)體中產(chǎn)生感應(yīng)電熱。所以,在轉(zhuǎn)子旋轉(zhuǎn)的時(shí)候就會(huì)在定子繞組中產(chǎn)生感應(yīng)電勢(shì),即運(yùn)動(dòng)電勢(shì),一般稱為反電動(dòng)勢(shì)或反電勢(shì)。
1.1 傳統(tǒng)反電動(dòng)勢(shì)檢測(cè)的原理
具有梯形反電動(dòng)勢(shì)波形的三相無刷直流電機(jī)主電路,對(duì)于某一相繞組(假設(shè) A 相),其導(dǎo)通時(shí)刻的基本電路原理圖如圖 1 所示。
1.2 反電動(dòng)勢(shì)的推導(dǎo)
無刷直流電機(jī)的三相端電壓方程:
由于采用兩相導(dǎo)通三相六拍運(yùn)行方式,任一瞬間只有兩相導(dǎo)通,設(shè) A 相、B 相導(dǎo)通,且 A+,B-,則 A、B 兩相電流大小相等,方向相反,C 相電流為零。
式(5)即為 C 相反電動(dòng)勢(shì)檢測(cè)方程。
同理,A 和 B 相反電動(dòng)勢(shì)檢測(cè)方程為:
但是實(shí)際上,繞組的反電動(dòng)勢(shì)難以直接測(cè)取,因此,通常的做法是檢測(cè)電機(jī)端電壓信號(hào),進(jìn)行比較來間接獲取繞組反電動(dòng)勢(shì)信號(hào)的過零點(diǎn),從而確定轉(zhuǎn)子的位置,故這種方法又稱為“端電壓法”。
基于端電壓的反電動(dòng)勢(shì)檢測(cè)電路如圖 2 所示,將端電壓 Ua、Ub、Uc 分壓后,經(jīng)過濾波得到檢測(cè)信號(hào) Ua、Ub、Uc,檢測(cè)電路的 O 點(diǎn)與電源負(fù)極相連,因此式(5)~(7)轉(zhuǎn)化為:
根據(jù)上述結(jié)論,檢測(cè)到反電動(dòng)勢(shì)過零點(diǎn)后,再延遲 30°即為無刷直流電動(dòng)機(jī)的換相點(diǎn)。但實(shí)際的位置檢測(cè)信號(hào)是經(jīng)過阻容濾波后得到的,其零點(diǎn)必然會(huì)產(chǎn)生相位偏移,實(shí)際應(yīng)用時(shí)必須進(jìn)行相位補(bǔ)償。
2、 新型檢測(cè)方式的提出
針對(duì)以上現(xiàn)有技術(shù)存在的缺點(diǎn),提出一種電路簡(jiǎn)單、成本低、恒零相移濾波,無需構(gòu)建虛擬中性點(diǎn),無需速度估測(cè)器和相移校正,在整個(gè)高轉(zhuǎn)速比的范圍內(nèi)都能保持輸出準(zhǔn)確換相信號(hào)。該換相信號(hào)與霍爾傳感器輸出的換相信號(hào)完全一致,無需高速控制 IC,可以直接使用與霍爾傳感器相配套的低價(jià)控制 IC。
2.1 電路構(gòu)成
本設(shè)計(jì)采用方案包括 3 個(gè)分壓電路、3 個(gè)恒零相移濾波電路和 3 個(gè)線電壓比較器,如圖 3 所示。其特征在于 3 個(gè)分壓電路分別由兩個(gè)電阻 R1、R2 串聯(lián),其 R1 的一端作為輸入端分別無刷直流電機(jī)的三相電機(jī)線連接,R2 接地,R1、R2 的連接點(diǎn)作為輸出端,分別與相應(yīng)線電壓比較器的正確輸入端連接;3 個(gè)恒相移濾波電路分別由兩個(gè)電阻 R3、R4,兩個(gè)電容 C1、C2 和一個(gè)集成運(yùn)放構(gòu)成。電容 C1 并連接于分壓電路 R2。電容 C2 的一端與運(yùn)放的正輸入端連接并與電容 C1 的一端連接,另一端與運(yùn)放的負(fù)輸入端連接。電阻 R4 的一端與運(yùn)放的負(fù)輸入端連接,另一端接地。3 個(gè)線電壓比較器的正輸入端分別與相應(yīng)分壓電路的輸出端連接,而負(fù)輸入端分別與相鄰分壓電路的輸出端連接。各線電壓比較器的輸出分別作為電機(jī)的換相信號(hào)。
2.2 電路分析
本設(shè)計(jì)與以往技術(shù)相比,由于采用了不隨電機(jī)轉(zhuǎn)速變化的恒零相移濾波電路,無需相移校正,而送到比較器正負(fù)端的電壓是兩路沒有相移的端電壓,無需構(gòu)建虛擬中性點(diǎn)。比較器檢測(cè)到的是線電壓的過零點(diǎn),這個(gè)過零點(diǎn)正好對(duì)應(yīng)電機(jī)的換向點(diǎn),因此,輸出的換相信號(hào)與霍爾傳感器輸出的換相信號(hào)完全一致。在無刷直流電機(jī)高轉(zhuǎn)速比的范圍內(nèi),無需高速控制 IC,可以直接使用與霍爾傳感器相配套的低價(jià)控制 IC,電路結(jié)構(gòu)簡(jiǎn)單,成本低,可以替代霍爾傳感器廣泛應(yīng)用在家電、計(jì)算機(jī)外設(shè)和電動(dòng)車用等無刷直流電機(jī)上。
電機(jī)三相端電壓 Va、Vb、Vc 經(jīng) 3 個(gè)分壓電路和恒零相移濾波電路后,得到幅值減小的平滑端電壓 Vao、Vbo、Vco,濾波前后每一相端電壓的相移角度φ為:
相鄰兩相的恒零相移端電壓送到比較器后,比較器比較的是兩相端電壓,實(shí)質(zhì)上就是檢測(cè)線電壓的過零點(diǎn)。這個(gè)過零點(diǎn)正好對(duì)應(yīng)電機(jī)的換相點(diǎn),因此,比較器輸出的換相信號(hào)與霍爾傳感器輸出的換相信號(hào)完全一致。
結(jié)語(yǔ)
本文利用無刷直流電機(jī)端電壓設(shè)計(jì)的換相控制電路,結(jié)構(gòu)簡(jiǎn)單,運(yùn)行可靠。經(jīng)過實(shí)驗(yàn)證實(shí),此電路輸出的換相信號(hào)與霍爾傳感器輸出的換相信號(hào)完全一致,從而在一定程度上可以替代霍爾傳感器,并可應(yīng)用于較高溫、高壓、高輻射等傳感器無法勝任的場(chǎng)。不過由于器件自身的局限性,在一些更加惡劣場(chǎng)合的應(yīng)用還有待測(cè)試和改善。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長(zhǎng)
- 上海國(guó)際嵌入式展暨大會(huì)(embedded world China )與多家國(guó)際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索