劣質(zhì)連接器容易引發(fā)火災(zāi)的根本原因
發(fā)布時(shí)間:2019-09-26 責(zé)任編輯:xueqi
【導(dǎo)讀】光伏組件的接線盒、連接器都是不引人矚目的小部件。然而,這兩個(gè)小部件如果質(zhì)量不過(guò)關(guān),將是巨大的安全隱患!目前,國(guó)內(nèi)應(yīng)發(fā)生過(guò)多起由于連接器過(guò)熱引起火災(zāi),給電站帶來(lái)巨大損失。本文從金屬件、密封性及絕緣材料的選擇三個(gè)方面分析失效原因進(jìn)行分析,將根據(jù)現(xiàn)有樣品情況著重分析這兩方面并從理論上闡述導(dǎo)致接觸電阻增大的根本原因。
圖1:國(guó)內(nèi)光伏電站連接器燒毀案例
之前,國(guó)外知名機(jī)構(gòu) Fraunhofer ISE和TÜV聯(lián)合對(duì)光伏系統(tǒng)火災(zāi)原因調(diào)查后發(fā)現(xiàn)排在第一位和第三位的火災(zāi)原因都與連接器有關(guān)。
Source: Results of FMEA-Analysis ”PV-Brandschutz” Project Fraunhofer ISE&TÜV
發(fā)生火災(zāi)的根本原因就在于:
通流情況下連接器的電阻增大導(dǎo)致溫升增加并超出 塑料外殼及金屬件所能承受的溫度范圍從而引發(fā)火災(zāi)。因此,連接器的失效并引發(fā)火災(zāi)是由塑料外殼和金屬件共同作用的結(jié)果。
本文從金屬件、密封性及絕緣材料的選擇三個(gè)方面分析失效原因進(jìn)行分析,將根據(jù)現(xiàn)有樣品情況著重分析這兩方面并從理論上闡述導(dǎo)致接觸電阻增大的根本原因,參照?qǐng)D2。
圖2:光伏連接器失效樣品分析樹(shù)形圖
1 金屬件部分造成的失效分析
金屬件是連接器組成的主體,也是最主要的通流路徑。在各種環(huán)境下運(yùn)行時(shí),穩(wěn)定的電阻就是保障連接器正常工作的前提條件。
通常意義上連接器的接觸電阻R(圖3)由3部分組成,即Rco、金屬件內(nèi)阻及Rcr。
圖3:連接器接觸電阻R示意圖(插合狀態(tài))
對(duì)所有的樣品進(jìn)行初步外觀分析后發(fā)現(xiàn),連接器燒毀的部位主要存在于連接器的中間部分(即A-B段,記為Rco)及兩端壓接部分(即C-D段,記為Rcr)(見(jiàn)圖4)。
圖4:光伏連接器示意圖
1、電阻Rco的失效分析
電阻Rco是連接器對(duì)插后金屬件搭接部分的電阻。如果Rco不正常增大就會(huì)導(dǎo)致溫度升高,進(jìn)而導(dǎo)致連接器中間部位引發(fā)火災(zāi),見(jiàn)圖5。
圖5
導(dǎo)致Rco不正常增大的原因主要有如下三個(gè):
1)安裝不到位
安裝不到位是引起Rco增大的主要因素之一。每個(gè)公司的連接器插合后為了能保證通流,A-B段(圖2)的搭接長(zhǎng)度是一定的,目的就是為了保證兩個(gè)金屬件完全接觸。如果在連接器的組裝過(guò)程中出現(xiàn)安裝不到位的情況則金屬件的插合就會(huì)出現(xiàn)異常,如圖6。
圖6:插合到位(剖面)
由于Rco的實(shí)際應(yīng)用值超出了設(shè)計(jì)值,因此同樣的電流在該部位產(chǎn)生的熱量就會(huì)增加進(jìn)而導(dǎo)致溫度升高,這種狀況還會(huì)因?yàn)楦邷厮鶎?dǎo)致一系列后果(例如氧化、老化等等)而進(jìn)一步加劇。這種惡性循環(huán)所帶來(lái)的最終結(jié)果就是連接器燒毀。
2)不同公司的連接器互插
各公司的連接器互插現(xiàn)象在電站應(yīng)用中普遍存在,拜訪很多電站后會(huì)發(fā)現(xiàn)有的電站一個(gè)陣列竟然有三種連接器互插的情況,而且許多電站業(yè)主和組件廠商并沒(méi)有意識(shí)到其危害性,甚至很多連接器廠商都宣稱(chēng)可與MC4互插。
其實(shí)這是一個(gè)很大的誤區(qū)。UL、TÜV認(rèn)證機(jī)構(gòu)都明確說(shuō)明不同廠家生產(chǎn)的連接器是不能互插的,同時(shí)澳大利亞光伏安裝標(biāo)準(zhǔn)AS5033也明確說(shuō)明一個(gè)電站中不允許兩種廠家的連接器互插。不同廠家的連接器可以“compatible”說(shuō)法是不被接受的。
為什么不同廠家的連接器不能互插?
互插無(wú)法保證通流的根本原因是無(wú)法保證核心元器件的長(zhǎng)期有效接觸。同時(shí),不同廠家的外殼與密封件配合時(shí)也會(huì)因?yàn)槌叽缂肮罘矫娴脑蚨斐稍璉P等級(jí)失效,從而對(duì)連接器使用中內(nèi)部的環(huán)境造成傷害并導(dǎo)致失效。
此外,盡管有些連接器在與MC4互插后電阻增加不明顯,但這同樣不能保證互插連接器在經(jīng)過(guò)幾個(gè)月甚至幾年之后電阻的穩(wěn)定性。這也就是大部分不同廠家的連接器在互插并使用一段時(shí)間后才發(fā)生問(wèn)題的原因。
對(duì)連接器進(jìn)行TC200(通額定電流)+DH1000的長(zhǎng)期性測(cè)試。
剔除由于互插導(dǎo)致的失效連接器外,有效結(jié)果如圖7所示。很明顯,互插的不同連接器接觸電阻試驗(yàn)后迅速增加,且增加趨勢(shì)并未停止。而MC4公母端插合后接觸電阻雖然有小幅的增加但之后趨于穩(wěn)定,而連接器接觸電阻的持續(xù)穩(wěn)定性對(duì)于光伏電站安全高效的運(yùn)行至關(guān)重要。
圖7:不同連接器互插測(cè)試結(jié)果
再對(duì)連接器進(jìn)行短時(shí)間大電流(3-5分鐘、100A通流)測(cè)試,如圖8所示。
圖8:不同連接器互插的極限測(cè)試
從圖8中可以看出:3分鐘時(shí)互插的不同廠家連接器溫度已達(dá)到160℃,功率損失為700多瓦且外殼已經(jīng)出現(xiàn)變形特征;4分鐘后互插的連接器外殼開(kāi)始冒煙,而內(nèi)部溫度最高也達(dá)到了200℃以上,功率損耗也持續(xù)增加;5分鐘后,互插的連接器已開(kāi)始冒濃煙,功率損耗已達(dá)到800瓦,這時(shí)候連接器已接近失火狀態(tài)。
而與之形成鮮明對(duì)比的是MC4自身公母頭插合后的測(cè)試結(jié)果:除了溫度有初始的90℃升高到135℃及功率損失由69W升高到73W外,外觀并無(wú)明顯的變化。
當(dāng)然這種狀態(tài)也不會(huì)持續(xù)太長(zhǎng)時(shí)間,因?yàn)楫吘故?00A的極限通流測(cè)試。但該測(cè)試卻從正面直觀的反映出互插帶來(lái)的潛在威脅。
2、電阻Rcr的失效分析
壓接電阻Rcr主要是與壓接質(zhì)量和壓接工藝有關(guān)。我們可以通過(guò)壓縮比及壓接剖面來(lái)判斷壓接質(zhì)量的好壞。好的壓接要求剖面緊密不能留有空隙,同時(shí)外形規(guī)整(參考圖9)。對(duì)于常用的4mm2電纜壓接,壓接處的接觸電阻,標(biāo)準(zhǔn)IEC2742/05也提出了小于0.2mΩ的要求,而IEC60352-2則規(guī)定壓接端的拉出力要大于310N。
圖9:好的壓接(左)VS差的壓接(右)
涉及到壓接工藝時(shí)我們需要注意剝線環(huán)節(jié),標(biāo)準(zhǔn)中對(duì)于在剝線中切斷的銅絲數(shù)是有嚴(yán)格規(guī)定。如果切斷的銅絲較多就會(huì)影響壓接及通流質(zhì)量,從而造成較高的溫升。而在失效的樣品中我們發(fā)現(xiàn):電纜在壓接前內(nèi)部很多銅絲已被剪斷(見(jiàn)圖10)。
圖10:壓接端銅絲斷裂
為了保證好的壓接質(zhì)量,我們建議采用廠家提供的正規(guī)剝線工具及壓接工具。同時(shí)建議安裝時(shí)要由連接器廠家專(zhuān)業(yè)技術(shù)人員做系統(tǒng)詳細(xì)的培訓(xùn)。
2 密封性能造成的失效分析
連接器由于處于戶(hù)外,因此對(duì)于密封性能有著嚴(yán)格的要求。
例如有些連接器就達(dá)到了IP65和IP68的防護(hù)等級(jí)。由于連接器是與電纜匹配連接,因此當(dāng)涉及到密封性時(shí),電纜的選擇就變的非常重要。一般來(lái)說(shuō)不同的連接器型號(hào)會(huì)對(duì)應(yīng)不同的電 纜外徑,其目的就是保證密封性能。
例如MC4連接器可匹配3-9mm外徑(導(dǎo)體截面積1.5-10mm2)的光伏電纜,其對(duì)應(yīng)的型號(hào)卻高達(dá)6種。為了驗(yàn)證電纜的匹配性,在連接器組裝好之后還要對(duì)其進(jìn)行相關(guān)的測(cè)試,例如IP測(cè)試、濕絕緣測(cè)試及耐壓測(cè)試等等。
而在失效的樣品中就有兩個(gè)是用了不同的電纜,且外徑相差懸殊。圖11 中的左側(cè)圖連接器一側(cè)用的是光伏電纜(黑色),外徑為6mm,而另一側(cè)則是用的 普通線纜(藍(lán)色),外徑僅為4mm。將藍(lán)色電纜端的螺帽擰開(kāi)后發(fā)現(xiàn)可能由于密封不夠竟采用了紅色塑料片填充。在該種情況下連接器是很難保證其密封性,因此,在戶(hù)外應(yīng)用時(shí)有可能會(huì)進(jìn)水進(jìn)塵,從而破壞絕緣性能,進(jìn)而引發(fā)火災(zāi)。
圖11 中的右側(cè)圖連接器的一端是黑色的光伏電纜,外徑為6.1mm,而另一端則用了紅色的普通電纜且外徑僅為3.9mm。
3 這可輸入標(biāo)題絕緣材料造成的失效分析
絕緣材料的選擇直接決定了連接器的質(zhì)量。好的連接器需要選擇合適的絕緣材料,而是否合適主要是通過(guò)連接器使用要求來(lái)確定的,例如材料的耐候性能、耐熱性能、阻燃性能、機(jī)械性能、絕緣性能等,光伏連接器絕緣材料的選擇是這幾項(xiàng)性能綜合考慮的結(jié)果。選擇合適的材料才能降低產(chǎn)品在較高的溫升下的失火概率。
此外,對(duì)于光伏連接器來(lái)說(shuō)是不可以使用回料的。之所以這么說(shuō)是因?yàn)榛亓系氖褂糜衅錁O其嚴(yán)格的規(guī)定和產(chǎn)品檢驗(yàn)措施,只有這樣才能保證其產(chǎn)品的性能不會(huì)下降很多。而光伏連接器在很多的客戶(hù)端是要求使用25年以上,這就意味著對(duì)材料提出了非常高的要求。
雖然使用回料可降低產(chǎn)品成本,但卻增加了產(chǎn)品在使用端的失效概率,因此連接器廠商應(yīng)該加以杜絕。
4 失效總結(jié)
光伏連接器在光伏電站中占的成本比重較低,但卻是關(guān)鍵部件。前期電站建設(shè)時(shí),連接器引發(fā)的故障風(fēng)險(xiǎn)往往不受重視,但是后期卻會(huì)成為電站運(yùn)維的痛點(diǎn)。
因連接器失效而造成的運(yùn)維成本包括發(fā)電量收益損失、備品備件成本、人力成本以及安全風(fēng)險(xiǎn),這些運(yùn)維成本最終都會(huì)影響電站的投資回報(bào)。質(zhì)量可靠且由豐富生產(chǎn)組裝經(jīng)驗(yàn)的供應(yīng)商提供的光伏連接器是保證光伏電站正常穩(wěn)定運(yùn)轉(zhuǎn)的基礎(chǔ)之一,而電站的正常運(yùn)轉(zhuǎn)則是保證業(yè)主最大收益的前提之一。
來(lái)源:智匯光伏
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開(kāi)關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車(chē)用非接觸式微功率開(kāi)關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開(kāi)始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開(kāi)發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長(zhǎng)
- 上海國(guó)際嵌入式展暨大會(huì)(embedded world China )與多家國(guó)際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
傳感器
傳感器模塊
船型開(kāi)關(guān)
串聯(lián)電阻公式
創(chuàng)智成
磁傳感器
磁環(huán)電感
磁敏三極管
磁性存儲(chǔ)器
磁性元件
磁珠電感
存儲(chǔ)器
大功率管
單向可控硅
刀開(kāi)關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車(chē)
電動(dòng)工具
電動(dòng)汽車(chē)
電感