通過AC整流橋上的有源開關(guān)提高效率
發(fā)布時間:2021-09-10 來源:Siran Wang & Walter Yeh 責(zé)任編輯:wenwei
【導(dǎo)讀】提高電源轉(zhuǎn)換效率和功率密度一直是電源行業(yè)的首要目標(biāo),在過去十年中,更因功率器件、拓撲結(jié)構(gòu)和控制方案的發(fā)展而取得長足的進步。超結(jié)MOSFET、SiC二極管以及最新GaN FET的發(fā)展,確保了更高頻率下的更高開關(guān)效率;同時,高級拓撲及其相應(yīng)控制方案的實現(xiàn)也在高速發(fā)展。因此,平衡導(dǎo)通損耗與開關(guān)損耗以實現(xiàn)最佳工作點,現(xiàn)在已完全可以實現(xiàn)。
但是,用于AC線電壓整流的前端二極管電橋仍然是個大問題,它阻礙了效率和功率密度的提升。高壓整流二極管的正向壓降通常約為1V。這意味著主電流路徑中的兩個二極管可能導(dǎo)致超過1%的效率損耗,尤其在低壓輸入的時候。
舉例來說,當(dāng)前最流行的效率規(guī)范之一為80 Plus規(guī)范。最高級別80 Plus鈦金牌在230VAC時要求達到96%的峰值效率,在115VAC時要求達到94%的峰值效率。當(dāng)次級DC / DC效率高達98%時,電橋?qū)⒑苋菀滓蚱涓邆鲗?dǎo)損耗而消耗PFC級的大部分效率。此外,二極管電橋還可能成為電源中最熱的部位,這不僅限制了功率密度,還給散熱設(shè)計造成了一定的困擾。
于是,越來越多人把注意力集中在如何解決這組整流橋的問題上來。解決這個問題的方向還是非常明確的,最受歡迎的兩種方案分別為雙升壓無橋PFC和圖騰柱PFC,如圖1所示。在這兩種方案中,主電流路徑中的整流二極管數(shù)量都從2個減少到1個,從而降低了整流管上的導(dǎo)通損耗。
圖1: 無橋PFC拓撲
目前,已經(jīng)有研究和參考設(shè)計展現(xiàn)出令人鼓舞的結(jié)果,但還尚未被消費類市場大批量采用和量產(chǎn)。因為要開發(fā)出尖端的IC解決方案,實現(xiàn)有競爭力的BOM成本以及經(jīng)過驗證的強健性和可靠性,還有很長的路要走。雙升壓無橋PFC需要一個額外的大功率電感來抑制共模噪聲,這對成本和產(chǎn)品尺寸都是不利因素。而圖騰柱PFC通常都需要高成本的組件,例如上管驅(qū)動器和隔離式電流采樣,并且大都需要采用DSP,或者在常規(guī)PFC控制器IC上采用大量分立組件。
實際上,我們無需等待采用無橋拓撲的新型控制器IC發(fā)展成熟,通過另一種簡單快捷的替代方案,可以立即降低電橋上的功率損耗。這種方案的基本思想是用同步整流MOSFET代替兩個下管整流二極管,而其它的電源設(shè)計部分(包括所有功率級和控制器IC)均保持不變。圖2的示例中采用MPS的MP6925A對這一概念進行了說明。MP6925A是一款僅需很少外部組件的雙通道同步整流驅(qū)動器。
圖2: 將同步整流MOSFET用作下管電橋
MP6925A通常用于LLC轉(zhuǎn)換器。它根據(jù)對漏源電壓(VDS)的檢測主動驅(qū)動兩個MOSFET。在設(shè)置系統(tǒng)以替換交流電橋中的下管二極管時,可采用兩個高壓JFET(QJ1 和 QJ2)在VDS檢測期間鉗位高壓。當(dāng)電流流經(jīng)MOSFET體二極管之一時,VDS上的負閾值被觸發(fā),驅(qū)動器導(dǎo)通相應(yīng)的MOSFET。在MOSFET導(dǎo)通期間,驅(qū)動器會調(diào)節(jié)相應(yīng)的柵極電壓,將VDS保持在一定水平之下,直到電流過低而無法觸發(fā)VDS關(guān)斷閾值為止。圖3顯示了其典型工作波形。
a) 115VAC輸入,滿載
b) 115VAC, 20% 負載
圖3: 同步整流MOSFET典型波形
一個具備競爭力的同步整流驅(qū)動器應(yīng)當(dāng)具有非常快速的關(guān)斷功能。例如,在驅(qū)動等效4.7nF柵極電容時,MP6925A能夠以35ns的超低延遲關(guān)斷柵極。因此,該器件可以有效防止MOSFET上出現(xiàn)任何反向電流。此外,其MOSFET還具有“防反彈邏輯”,可防止兩個MOSFET同時導(dǎo)通。該特性使整個解決方案變得非??煽浚瑹o任何直通風(fēng)險。
以下的實驗結(jié)果來自120W適配器設(shè)計。該設(shè)計采用了650V,99mΩ MOSFET作為有源開關(guān),替代兩個整流橋下端的二極管。圖4顯示了用SR MOSFET解決方案替代二極管后效率的提升。在115VAC低壓輸入下,滿載效率提高了0.43%,這意味著總功耗可降低0.5W以上。對大多數(shù)應(yīng)用而言,這都是對性能和散熱設(shè)計的重大改善。
圖4: 120W適配器設(shè)計的實驗結(jié)果
采用功能強大的同步整流器提供有源電橋解決方案,為解決傳統(tǒng)PFC二極管電橋的高功耗問題提供了一種即時替代方案。用MOSFET代替正向壓降相對固定的橋式二極管,能夠以更低的MOSFET導(dǎo)通電阻降低傳導(dǎo)損耗。與此同時,降低功耗也簡化了散熱設(shè)計。而且,相比其他復(fù)雜的無橋解決方案,該解決方案采用了只需少量外部元器件的精密IC控制器,因此在實際應(yīng)用中更具成本效益,而且隨時可用。
來源:MPS
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀:
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測器應(yīng)用與測試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會2024激發(fā)創(chuàng)新,推動智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實技術(shù)再獲獎分享供應(yīng)鏈挑戰(zhàn)下的自我成長
- 上海國際嵌入式展暨大會(embedded world China )與多家國際知名項目達成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro