【導(dǎo)讀】作為開(kāi)關(guān)電源損耗的一部分,印刷電路板(PCB)主回路紋波電流阻抗的損耗常被忽略不計(jì)。然而,對(duì)于采用大電流核心電壓和高紋波電流工作的應(yīng)用而言,這種損耗卻不容忽視。使用Ansys Q3D,可以提取典型核心電壓功率級(jí) PCB 布局中主回路紋波電流的頻變電阻參數(shù),還可以看出這一損耗成分是如何顯著改善建模與測(cè)量總損耗之間的相關(guān)性(開(kāi)關(guān)頻率函數(shù))。為了在負(fù)頻率系數(shù)PCB與無(wú)源元件損耗和正頻率系數(shù)MOSFET常規(guī)開(kāi)關(guān)損耗之間的平衡點(diǎn)處達(dá)到峰值效率,我們提出了一種優(yōu)化開(kāi)關(guān)頻率的解析表達(dá)式。
介紹
過(guò)去,建模降壓變換器功率損耗的主要研究對(duì)象是半導(dǎo)體器件損耗[1-5],還有小部分集中在無(wú)源元件損耗上[1-2],但針對(duì)PCB損耗和PCB 交流電阻損耗,卻鮮有觸及。對(duì)于這些損耗,可以通過(guò)使用Ansys Q3D,提取出典型核心電壓驅(qū)動(dòng)器和MOSFET(DrMOS)應(yīng)用的PCB主回路交流電阻(ACR),從而計(jì)算出相關(guān)的紋波電流ACR損耗。由于峰 - 峰紋波電流的增加,這些損耗會(huì)隨著頻率的降低而非線(xiàn)性地增加,導(dǎo)致在較高的開(kāi)關(guān)頻率下,峰值效率低于傳統(tǒng)的損耗分析預(yù)測(cè)數(shù)值。
PCB 主回路交流電阻的模型、仿真和測(cè)量
同步降壓變換器的主要功率損耗可歸納為有源元件損耗(MOSFET 直流和開(kāi)關(guān)損耗、MOSFET 驅(qū)動(dòng)器損耗)、無(wú)源元件損耗(電感直流電阻、交流電阻和核心損耗、電容等效串聯(lián)電阻損耗)和印刷電路板損耗(PCB 直流電阻和交流電阻損耗)。
PCB頻變電阻損耗是由于主回路中循環(huán)的鋸齒紋波電流所造成的,該紋波電流可根據(jù)公式(1)計(jì)算得出:
(1)
其中 Rac 為紋波電流波形的PCB頻變有效電阻。核心電壓(Vcore) DrMOS 同步降壓變換器在峰值效率運(yùn)行條件下具有較大的紋波電流,為研究提供了案例??蓪⒍嘞嗪诵碾妷?PCB功率級(jí)布局的單相部分導(dǎo)入Anysis Q3D(參見(jiàn)圖1a)中,并估計(jì)出PCB 交流電阻損耗成分。圖1b顯示了PCB主回路紋波電流循環(huán)路徑中Q3D仿真的交流電流分布圖。
圖1:PCB核心電壓主回路 Q3D 結(jié)構(gòu)模型和 AC 電流仿真
Q3D提取的頻變電阻與圖2所示的板級(jí)LCR測(cè)量值非常匹配。另外,PCB 頻變電阻也與公式(2)中所示的理想集膚效應(yīng)模型相當(dāng)一致:
(2)
通過(guò)對(duì) 15% 占空比三角波的加權(quán)傅里葉分析,估算出功率級(jí)鋸齒波功率損耗的有效紋波電流電阻(Rac),所得到的等效功率損耗交流電阻,幾乎等于仿真基本開(kāi)關(guān)頻率成分交流電阻的1.1倍。
圖2:仿真和測(cè)量PCB核心電壓主回路頻變電阻(交流電阻)
總變換器損耗模型與測(cè)量
總開(kāi)關(guān)損耗測(cè)量在單相DrMOS核心電壓評(píng)估板上進(jìn)行,利用推薦的150nH電感器,在Vin = 12V和Vout = 1.8V的典型工作條件下,頻率為700kHz時(shí)的峰-峰紋波電流 (Ipp) 約為14.5A。同時(shí),在400kHz至2.5MHz的頻率范圍內(nèi),分析了變換器在15A負(fù)載電流下的功率損耗,在700kHz時(shí)提取損耗成分(圖3和圖4)。通過(guò)對(duì)設(shè)備的測(cè)量和仿真,估算出MOSFET損耗。電感的繞組交流電阻損耗是基于Q3D的仿真數(shù)據(jù),而電感的磁芯損耗和交流電阻損耗則是基于供應(yīng)商提供的規(guī)格書(shū)數(shù)據(jù)。輸出POSCAP ESR損耗,是依據(jù)陶瓷電容與POSCAP的功率損耗差異而來(lái)。PCB 交流電阻損耗來(lái)自上述Q3D的頻變電阻分析。其中,PCB 交流電阻損耗,約占紋波電流電阻損耗的25%,大約為700 kHz頻率下峰值效率工作總損耗的5%。
圖3:700 kHz下的功率損耗成分圖
總功率損耗可用公式(3)表示:
(3)
其中,A為直流功率損耗,B × f為比例×頻率的MOSFET開(kāi)關(guān)功率損耗,C × f −1.5為紋波電流電阻功率損耗。根據(jù)公式計(jì)算,峰值效率頻率出現(xiàn)在比例×頻率MOSFET功率損耗為紋波電流功率損耗的1.5倍時(shí),此時(shí)可得到最小總功率損耗。在DrMOS核心電壓操作條件下,此穿越頻率發(fā)生在約700kHz時(shí)(圖4)。
圖4:功率損耗與頻率的關(guān)系
結(jié)論
PCB主回路紋波電流電阻損耗可能是總體損耗的重要組成部分,它大大限制了峰值效率,使其低于傳統(tǒng)分析估算方法得出的數(shù)值。我們可以使用Q3D工具提取電阻參數(shù),并合理地估算出這些損耗,以便提高效率和頻率估算準(zhǔn)確度。還可發(fā)現(xiàn),峰值效率的工作頻率高于沒(méi)有PCB 交流電阻損耗因素的頻率值。由于MPS將驅(qū)動(dòng)器和MOSFET集成在一起,使得它的DrMOS設(shè)備本身就具有更高的頻率,從而也減輕這種損耗因素。
1 Gregory Sizikov, Edy G. Fridman, and Michael Zelikson, “Efficiency Optimization of Integrated DC-DC Buck Converters,” IEEE ICECS, 2010, pp. 1208-1211.
2 Volkan Kursun, Siva G. Narendra, Vivek K. De, and Eby G. Friedman, “Efficiency Analysis of High Frequency Buck Converter for On-Chip Integration with a Dual-VDD Microprocessor,” ESSCIRC, 2002, 743-746.
3 Yuancheng Ren, Ming Xu, Jinghai Zhou, Fred C. Lee, “Analytical Loss Model of Power MOSFET,” IEEE, Power Electronics, Vol.21 NO.2, 2006 , pp. 310-319.
4 Wison Eberle, Zhiliang Zhang, Yan-Fei Liu, and Paresh C. Sen, “A Practical Switching Loss Model for Buck Voltage Regulators,” IEEE, Power Electronics, Vol.24 NO.3, 2009 , pp. 700-712.
5 Yali Xiong, Shan Sun, Hongwei Jia, Patrick Shea, and Z. John Shen, “New Physical Insights on Power MOSFET Switching Losses,” IEEE, Power Electronics, Vol.24 NO.2, 2009 , pp. 525-531.
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀: