救世主GaN來了!第1部分:體二極管反向恢復
發(fā)布時間:2021-01-04 責任編輯:wenwei
【導讀】作為電源工程師,我們能夠回憶起第一次接觸到理想化的降壓和升壓功率級的場景。還記得電壓和電流波形是多么的漂亮和簡單(圖1),以及平均電流的計算是多么地輕松,并且確定與輸入和輸出相關(guān)的傳遞函數(shù)也輕而易舉?
圖1:理想化的降壓與升壓功率級:這些圖看起來真是太棒了!
當我們對于用實際組件來實現(xiàn)轉(zhuǎn)換器有更加深入的了解時,這個波形變得復雜了很多。不斷困擾開關(guān)轉(zhuǎn)換器的一個特別明顯的非理想狀態(tài)就是同步降壓或升壓轉(zhuǎn)換器內(nèi)所使用的MOSFET體二極管的反向恢復。氮化鎵—GaN器件不會表現(xiàn)出反向恢復特性,并因此避免了損耗和其它相關(guān)問題。借助于我的LMG5200和一個差不多的基于硅FET的TPS40170EVM-597,我將開始在24V至5V/4A電源轉(zhuǎn)換器中測量反向恢復。
反向恢復—到底是個啥東西?
一個二極管中的反向恢復就是當反向電壓被施加到端子上時流經(jīng)二極管的反向電流(錯誤方向?。ㄕ堃妶D2)。二極管中有儲存的電荷,這些電荷必須在二極管能夠阻斷反向電壓前重新組合。這個重新組合是溫度、正向電流、Ifwd、電流的di/dt,以及其它因數(shù)的函數(shù)。
圖2:反向恢復電流波形
恢復的電荷,Qrr,被分為兩個分量:恢復之前的Qa和恢復之后的Qb—二極管在此時開始支持反向電壓—請見圖3。你也許見過Qb與Qa一樣的軟恢復,這樣的話,di/dt比較慢,或者說,你見過Qb很小,而di/dt很高的“活躍”二極管。當di/dt很高時(由二極管急變引起),橋式功率環(huán)路中寄生電感的響應方式是把它們儲存的電能傾倒到寄生節(jié)點電容中;電壓振鈴會由于二階響應而出現(xiàn)。這也是將輸入功率級旁路電容器放置在輸入級附近的原因。由于環(huán)路中用于快速恢復的電感較少,由寄生電容導致電壓振鈴的電能較少。
圖3:已恢復的電荷
我用常規(guī)的方法來計算反向恢復損耗:我使用的是數(shù)據(jù)表中的Qrr額定值,并將其乘以頻率和輸入電壓(如果是降壓轉(zhuǎn)換器)或輸出電壓(如果是升壓轉(zhuǎn)換器)。二極管或MOSFET數(shù)據(jù)表通常指定一個反向恢復時間和一個反向恢復電荷。例如,CSD18563Q5A指定了一個49ns的反向恢復時間,trr,以及一個63nC的Qrr。方程式1計算在一個300kHz,24V->5V降壓轉(zhuǎn)換器中,由Qrr所導致的損耗一階估算值:
Qrr損耗 ~24V * 300kHz * 63nC = 454mW (1)
請注意!Qrr通常是25°C溫度下,針對特定Ifwd和di/dt的額定值。實際Qrr會在結(jié)溫上升時,比如說125°C時加倍(或者更多)。di/dt和初始電流都會有影響(更高或更低)。對于活躍型二極管,這個功率的大部分在上部開關(guān)內(nèi)被耗散。對于軟恢復二極管,這個功率在上部開關(guān)和體二極管之間分離開來。如果di/dt和Ifwd條件與我的應用相類似,我將25°C溫度下?lián)p耗的2倍作為與恢復相關(guān)損耗的估算值。
那么,你打算拿這些損耗怎么辦呢?實際電路中,由反向恢復導致的真實峰值電流是多少?你也許嘗試用一個SPICE工具來仿真恢復,不過我還未在SPICE社區(qū)內(nèi)發(fā)現(xiàn)比較好的針對二極管恢復的模型。圖4顯示的是一個TINA-TI™ 仿真的結(jié)果;我用我們的24V/5V降壓轉(zhuǎn)換器的TPS40170產(chǎn)品文件夾對這個仿真進行了修改,從而顯示出頂部開關(guān)內(nèi)的開關(guān)節(jié)點電壓 (SW) 和電流(負載電流加上反向恢復電流,以及用一個10mΩ分流電阻器感測到的開關(guān)節(jié)點電容電流)。
圖4:TINA-TI™ 仿真:TPS540170
注意到大約5A的峰值紋波電路,以及5A峰值反向恢復電流加上開關(guān)節(jié)點電容充電電流。我運行了這個仿真,并且將溫度從27°C增加至125°C—峰值恢復電流沒有增加—并且看起來好像SPICE沒有對這個恢復進行正確建模。
在本系列的第2部分,我將詳細介紹在真實電路中測量反向恢復的方法,然后將一個基于MOSFET的標準同步降壓轉(zhuǎn)換器與全新的LMG5200進行比較。
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀:
特別推薦
- 【“源”察秋毫系列】下一代半導體氧化鎵器件光電探測器應用與測試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會2024激發(fā)創(chuàng)新,推動智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導體Web工具配合智能傳感器加快AIoT項目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實技術(shù)再獲獎分享供應鏈挑戰(zhàn)下的自我成長
- 上海國際嵌入式展暨大會(embedded world China )與多家國際知名項目達成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索