不容小看的新型智能慣性傳感器
發(fā)布時(shí)間:2019-12-07 責(zé)任編輯:wenwei
【導(dǎo)讀】MEMS傳感器正在涌入市場(chǎng),這些傳感器成本效益高,易于集成在場(chǎng)景感知解決方案中,提供有關(guān)其所處場(chǎng)景的重要信息。這種多用途感測(cè)技術(shù)有許多用例:MEMS傳感器在穿戴物聯(lián)網(wǎng)設(shè)備中用于檢測(cè)用戶活動(dòng)和手勢(shì);工業(yè)MEMS傳感器在工廠維護(hù)和故障預(yù)測(cè)中發(fā)揮重要作用,有助于提高工廠生產(chǎn)效率;MEMS對(duì)車輛安全性和自動(dòng)駕駛發(fā)展至關(guān)重要。
傳感器數(shù)據(jù)應(yīng)用是許多應(yīng)用場(chǎng)景的基礎(chǔ),各種傳感器的大規(guī)模應(yīng)用促使傳感器成本下降。成本降低使同一設(shè)備安裝多個(gè)同類型傳感器成為可能,隨著同類型傳感器的數(shù)量增多,不同類型的傳感器和傳感器總數(shù)也在不斷增長(zhǎng)。為了獲得更可靠的信息,實(shí)現(xiàn)更高質(zhì)量的應(yīng)用,業(yè)內(nèi)開發(fā)出了傳感器數(shù)據(jù)融合技術(shù),提高了慣性模塊的應(yīng)用規(guī)模,甚至為更多應(yīng)用打開了大門。
終端設(shè)備應(yīng)用只有傳感器還不夠,還需要智能單元來(lái)處理信息和理解場(chǎng)景。應(yīng)用處理器負(fù)責(zé)讀取數(shù)據(jù)和處理信息,隨著傳感器數(shù)量增加,應(yīng)用處理器的任務(wù)變得更加復(fù)雜。同樣,連接傳感器和應(yīng)用處理器的總線也變得至關(guān)重要,大量的交換數(shù)據(jù)可能造成數(shù)據(jù)擁堵,總線性能下降。
最初,有人認(rèn)為更快的總線和性能更高的處理器可以解決這些問(wèn)題。第二階段是“智能傳感器”一詞被濫用,把通用低功耗處理器從板上移到傳感器內(nèi)部,做成一個(gè)系統(tǒng)級(jí)封裝解決方案,這種通過(guò)增加一個(gè)微控制器的方式有效增加傳感器數(shù)量的簡(jiǎn)單方法被稱為“智能”。
在設(shè)計(jì)開發(fā)LSM6DSOX時(shí),我們決定不走尋常路,將所有已知應(yīng)用在概念上分為兩大類別:一種是用歸納算法實(shí)現(xiàn)的效果更好的應(yīng)用;另一種是用演繹算法實(shí)現(xiàn)的效果更符合預(yù)期的應(yīng)用。分析實(shí)際數(shù)據(jù)模式同時(shí)保持最高統(tǒng)計(jì)性能,是我們?cè)u(píng)估最佳設(shè)計(jì)方案的方法標(biāo)準(zhǔn)。
最后,為了便于執(zhí)行演繹算法,我們決定在慣性單元內(nèi)嵌入一個(gè)有多達(dá)16個(gè)有限狀態(tài)機(jī)的數(shù)字模塊;針對(duì)歸納型算法,我們實(shí)現(xiàn)了一個(gè)機(jī)器學(xué)習(xí)模塊,該模塊能夠與現(xiàn)有人工智能工具互動(dòng),采用監(jiān)督式機(jī)器學(xué)習(xí)方法,在傳感器內(nèi)部對(duì)復(fù)雜計(jì)算進(jìn)行預(yù)處理,分類器能夠分析實(shí)時(shí)數(shù)據(jù),識(shí)別活動(dòng)和場(chǎng)景并進(jìn)行分類,參數(shù)和功能具有很高的可配置性。
這種傳感器數(shù)據(jù)分析專用智能技術(shù)可以執(zhí)行復(fù)雜算法,把很大一部分計(jì)算負(fù)荷轉(zhuǎn)交給傳感器處理,使其它設(shè)備保持空閑狀態(tài)。通過(guò)這種方式,可以最大程度地降低功耗,減輕通信總線負(fù)擔(dān),并最大程度地提高系統(tǒng)的整體能效。
傳感器僅在必要時(shí)才喚醒其它設(shè)備和應(yīng)用處理器,通過(guò)這種方式,可以大幅降低功耗,我們認(rèn)為,僅LSM6DSOX這些新功能就可以創(chuàng)造出新的應(yīng)用。
I.前言
在過(guò)去的十年中,物聯(lián)網(wǎng)應(yīng)用規(guī)模呈指數(shù)增長(zhǎng)。大多數(shù)物聯(lián)網(wǎng)應(yīng)用都涉及在可能沒(méi)有電源的位置測(cè)量物理數(shù)值。 增裝電源線通常是行不通的,因此,電池是首選供電方案,并且無(wú)線數(shù)據(jù)傳輸是必選。物聯(lián)網(wǎng)相關(guān)應(yīng)用至少需要一個(gè)傳感器獲取數(shù)據(jù)和一個(gè)傳輸媒介發(fā)送數(shù)據(jù)。電源需要給數(shù)據(jù)傳輸媒介和傳感器供電。在設(shè)計(jì)這種類應(yīng)用時(shí),需要在這個(gè)方面做出權(quán)衡和取舍:是最大限度延長(zhǎng)電池續(xù)航時(shí)間還是提高數(shù)據(jù)傳輸頻率?
應(yīng)用設(shè)計(jì)者可用一個(gè)在市場(chǎng)上有售的重要工具來(lái)解決這個(gè)折衷難題。這個(gè)工具是一個(gè)精密的計(jì)算單元,可以執(zhí)行參數(shù)測(cè)量和數(shù)據(jù)傳輸任務(wù),效果和能效都很好,這樣的計(jì)算單元通常是針對(duì)低功耗設(shè)計(jì)的通用微控制器。對(duì)于低功耗應(yīng)用,無(wú)線數(shù)據(jù)傳輸比其它處理任務(wù)更重要,因此,物聯(lián)網(wǎng)應(yīng)用設(shè)計(jì)策略是,如果其它處理任務(wù)允許降低通信速度,則可以將計(jì)算單元轉(zhuǎn)移到物聯(lián)網(wǎng)端。
本文旨在于介紹創(chuàng)新傳感器在降低產(chǎn)品功耗方面取得的新進(jìn)展。意法半導(dǎo)體的新型慣性模塊LSM6DSOX允許將算法處理過(guò)程全部或部分移至傳感器的定制低功耗環(huán)境。這種方法具有廣泛的可配置性,保證廣泛的應(yīng)用范圍。本文結(jié)構(gòu)如下:第一章介紹一個(gè)創(chuàng)新的嵌入式算法,并結(jié)合應(yīng)用案例說(shuō)明其優(yōu)勢(shì)。然后用兩個(gè)章節(jié)專門介紹機(jī)器學(xué)習(xí)處理。最后一章介紹一個(gè)好用的定制支持軟件,用戶可以根據(jù)需求快速配置軟件,創(chuàng)建新應(yīng)用。
II.嵌入式算法方案
如前一章所述,簡(jiǎn)單的物聯(lián)網(wǎng)應(yīng)用模型包括發(fā)射器/接收器、計(jì)算單元、執(zhí)行器或傳感器和電池。
以智能手環(huán)為例,智能手環(huán)能夠識(shí)別用戶活動(dòng),并輸出相關(guān)活動(dòng)數(shù)據(jù):用戶步行多遠(yuǎn),乘車多長(zhǎng)時(shí)間等。當(dāng)然,智能手環(huán)應(yīng)具有翻腕顯示日期和時(shí)間的功能。藍(lán)牙低功耗系統(tǒng)芯片[4]是執(zhí)行傳輸和控制的關(guān)鍵組件。該解決方案嵌入了完整的藍(lán)牙網(wǎng)絡(luò)處理器和運(yùn)行應(yīng)用程序的應(yīng)用處理器。應(yīng)用處理器包括低功耗微控制器、用戶程序NVM存儲(chǔ)器,數(shù)據(jù)存儲(chǔ)器、編程存儲(chǔ)器(NVM鏡像)以及通信接口(SPI,I²C等)。從下面給出的系統(tǒng)示例可以大致估算出該解決方案的功率預(yù)算。這款內(nèi)置微控制器的“智能”藍(lán)牙模塊通常具有不同的功耗模式,下面列出了最常見的模式:
a)睡眠模式:此模式用于關(guān)閉大多數(shù)內(nèi)部模塊或使其處于低功耗狀態(tài),最大程度地降低功耗。從此模式返回到正常工作模式需要一些時(shí)間(0.5-2 ms)。該模式電流消耗在0.5-2 µA之間。
b)微控制器工作模式:射頻發(fā)射器/接收器關(guān)閉,微控制器正常工作。 此模式的電流消耗在1-3 mA之間。
c)射頻收發(fā)模式:設(shè)備處于通信連接狀態(tài),功耗為3-20 mA。
我們討論一下智能手環(huán)檢測(cè)用戶活動(dòng)的用例。假設(shè)智能藍(lán)牙模塊中的微控制器通過(guò)I2C/SPI接口連接慣性模塊,傳感器數(shù)據(jù)輸出數(shù)據(jù)速率配置為25Hz。每當(dāng)嵌入式16 MHz時(shí)鐘域生成樣本時(shí),微控制器就會(huì)退出睡眠模式,讀取傳感器數(shù)據(jù)并執(zhí)行活動(dòng)識(shí)別算法。高質(zhì)量的活動(dòng)識(shí)別算法用例平均需要4 ms的處理時(shí)間。藍(lán)牙傳輸是間歇性的,取決于用戶要求(一天一次)。
圖1:微控制器從睡眠到喚醒的時(shí)序
圖1顯示了微控制器運(yùn)行算法時(shí)的占空比時(shí)序。Tstart是微控制器的喚醒時(shí)間,Talgo是算法的執(zhí)行時(shí)間,Todr是傳感器兩次讀取操作的間隔。
下面是總平均電流ITOT的基本計(jì)算公式,其中包含各種主要電流消耗參數(shù):
ITOT = IBUS + ISLEEP + falgo * IUCORE * ( Tstart/2 + Talgo )
IBUS 是接口總線讀取操作消耗的電流;SPI總線的讀取電流應(yīng)小于1 µA,I²C總線約在2-5 µA之間。射頻是間歇性傳輸,所以功耗可以忽略不計(jì)??紤]到每個(gè)參數(shù)取值取其聲明范圍的中間值,最后得到的ITOT為230 µA。
嵌入式算法是經(jīng)過(guò)重新配置的可以實(shí)現(xiàn)“活動(dòng)識(shí)別”,工作電流小于8 µA。這里所說(shuō)的嵌入式算法與在微控制器上運(yùn)行的算法在性能和質(zhì)量上完全相同。嵌入式解決方案的顯著優(yōu)勢(shì)是在傳感器內(nèi)部生成可用數(shù)據(jù),因此不存在IBUS功耗。此外,嵌入式解決方案完全沒(méi)有微控制器安全退出睡眠狀態(tài)所需的Tstart時(shí)間,當(dāng)Tstart和IBUS兩項(xiàng)參數(shù)均為零時(shí),ITOT估算值是200 µA,這意味著,使用相同公式falgo*IUCORE*Talgo計(jì)算,算法從微控制器遷移到傳感器使功耗降至二十五分之一。
因?yàn)橐夥ò雽?dǎo)體軟件庫(kù)和客戶需求是已知的,并且是合并在一起的,所以,我們的策略是收集最常見的用例,然后將其分為兩類。第一類是由非常適合使用有限狀態(tài)機(jī)的算法組成,第二類基于需要統(tǒng)計(jì)分析(基于模式分析)并且可以通過(guò)決策網(wǎng)(樹)有效實(shí)現(xiàn)的應(yīng)用。針對(duì)這兩大類應(yīng)用,我們開發(fā)出一個(gè)覆蓋現(xiàn)有算法的“元命令”集,并確保算法具有廣泛的可重新配置性,以處理新的自定義需求。最后一步是算法分析,目的是找到最佳的低功耗且有效的算法定制邏輯。在不影響算法性能的情況下,按照特定應(yīng)用需求簡(jiǎn)化算法。下面的兩個(gè)章節(jié)介紹這兩個(gè)模塊和元數(shù)據(jù)。
III.機(jī)器學(xué)處理(MLP)
有限狀態(tài)機(jī)是利用本身固有的演繹推理特性:從假設(shè)開始,檢驗(yàn)達(dá)到特定邏輯狀態(tài)的概率。對(duì)于運(yùn)動(dòng)檢測(cè)算法,演繹推理是確定一系列事件是否滿足“規(guī)則”。這種方法適用于大多數(shù)手勢(shì)檢測(cè)算法,當(dāng)然,不能全部適用。例如,手機(jī)舉起到放下的手勢(shì)算法可以完全基于以下事實(shí):手機(jī)加速度計(jì)檢測(cè)到的重力主要是在同一個(gè)軸上,并在一個(gè)時(shí)間序列后,檢測(cè)到的重力方向?qū)?huì)變成相反方向。修改一些參數(shù)就可以更改手勢(shì)定義,這些參數(shù)包括軸定義、閾值和序列持續(xù)時(shí)間。步行檢測(cè)等運(yùn)動(dòng)算法幾乎不可能通過(guò)簡(jiǎn)單的狀態(tài)機(jī)來(lái)定義,因?yàn)樽兞繑?shù)量會(huì)急劇增加,傳感器定位、頻率、地形和個(gè)人行為導(dǎo)致感應(yīng)信號(hào)變化很大。從上一個(gè)示例中,可以得出一個(gè)更具一般性的概念:雖然手機(jī)舉起到放下的手勢(shì)統(tǒng)計(jì)方差在一個(gè)人群中是較明顯的,但是可以進(jìn)行演繹推理應(yīng)用設(shè)計(jì);而步行動(dòng)作會(huì)引起廣泛的統(tǒng)計(jì)方差,演繹推理方法應(yīng)該棄用,而采用歸納推理方法。
機(jī)器學(xué)習(xí)處理的基本原理是允許在芯片上執(zhí)行數(shù)據(jù)驅(qū)動(dòng)型算法,開發(fā)從輸入模式構(gòu)建模型的能力。在過(guò)去的十年中,互聯(lián)網(wǎng)和物聯(lián)網(wǎng)爆炸式增長(zhǎng),大量信息產(chǎn)生。 隨著數(shù)據(jù)量急劇增加,數(shù)據(jù)管理工具也被開發(fā)出來(lái),使數(shù)據(jù)開始有應(yīng)用價(jià)值。MLP解決方案被認(rèn)為是適合在慣性傳感器上執(zhí)行數(shù)據(jù)驅(qū)動(dòng)算法。MLP具有很高的可重新配置性,在慣性傳感器領(lǐng)域達(dá)到了預(yù)期效果,可以在超低功耗環(huán)境執(zhí)行算法,適用于耗電量大的產(chǎn)品,例如,物聯(lián)網(wǎng)算法。
數(shù)據(jù)挖掘是機(jī)器學(xué)習(xí)的一個(gè)重要分支:“數(shù)據(jù)挖掘是一個(gè)綜合機(jī)器學(xué)習(xí)、模式識(shí)別和統(tǒng)計(jì)學(xué)的跨學(xué)科領(lǐng)域 [1] [2],其目的是發(fā)現(xiàn)知識(shí)。
數(shù)據(jù)挖掘工具最后生成一個(gè)決策樹,應(yīng)用設(shè)計(jì)是從一個(gè)數(shù)據(jù)模式集合開始,以在MLP內(nèi)核上加載決策樹結(jié)束。用戶可以用支持軟件管理整個(gè)應(yīng)用設(shè)計(jì)過(guò)程,我們將在下一章介紹支持軟件,本章介紹MLP內(nèi)核背后的基本模塊。
圖4是機(jī)器學(xué)習(xí)處理內(nèi)核的整體結(jié)構(gòu)圖。
圖4:MLP內(nèi)核整體結(jié)構(gòu)圖
從圖中不難看出軟件層和硬件層之間的邊界。該應(yīng)用設(shè)計(jì)從傳感器數(shù)據(jù)模式開始,模式是描述MLP內(nèi)核在運(yùn)行時(shí)必須理解的知識(shí)。以活動(dòng)識(shí)別算法為例,MLP從涉及要識(shí)別的活動(dòng)(步行,跑步,運(yùn)動(dòng)的車輛,無(wú)運(yùn)動(dòng)等)的模式開始運(yùn)行,目的是直接從傳感器數(shù)據(jù)推出當(dāng)前活動(dòng)的結(jié)果。最多可以將3個(gè)傳感器的數(shù)據(jù)配置為算法輸入。陀螺儀和加速度計(jì)模塊位于傳感器內(nèi)部,外部傳感器(例如磁力計(jì))的數(shù)據(jù)可以通過(guò)嵌入式I2C控制器讀取。輸入傳感器數(shù)據(jù)由物理傳感器的軸和數(shù)值組成(表VI。)。
表I. MLP的輸入類型
要想調(diào)理輸入數(shù)據(jù),還有多個(gè)可配置濾波器可用,如下表所示(表VII)。
表II. 內(nèi)核中的濾波器類型
原始數(shù)據(jù)和過(guò)濾數(shù)據(jù)都可以設(shè)為特征模塊的輸入,特征模塊執(zhí)行數(shù)據(jù)的統(tǒng)計(jì)計(jì)算,輸出可以配置成多達(dá)19個(gè)不同的統(tǒng)計(jì)特征。表VIII中列出了可用特征。主要特征集分為觸發(fā)式和窗口式兩類,前者是按照特征事件計(jì)算的結(jié)果,后者是按照固定時(shí)窗間隔統(tǒng)計(jì)的結(jié)果。盡管所有特征計(jì)算結(jié)果可以是窗口式或觸發(fā)式特征集,取決于用戶配置,但只有這些特征的子集才可以生成觸發(fā)信號(hào)。
表III:MLP內(nèi)核的統(tǒng)計(jì)特征
在特征配置結(jié)束時(shí),軟件工具(下一章介紹)輸出一個(gè)配置文件和一個(gè)ARFF文件。配置文件安裝在慣性單元上用于配置MLP,ARFF文件用于數(shù)據(jù)挖掘工具,是與MLP處理器芯片匹配的。數(shù)據(jù)挖掘工具組建ARFF文件,針對(duì)特定應(yīng)用案例優(yōu)化(或“確定”)選擇最佳的特征集,并輸出決策樹及相關(guān)統(tǒng)計(jì)性能。
在數(shù)據(jù)挖掘工具處理和反饋后,可以重新處理數(shù)據(jù)并優(yōu)化特征集。
當(dāng)統(tǒng)計(jì)性能符合期望時(shí),可以通過(guò)意法半導(dǎo)體軟件工具生成的配置文件將決策樹加載到MLP內(nèi)核上。
IV.支持軟件
意法半導(dǎo)體開發(fā)出一個(gè)使基于統(tǒng)計(jì)學(xué)/機(jī)器學(xué)習(xí)的方法適合編程的工具,有了這個(gè)工具,設(shè)備配置過(guò)程變得輕松快捷。
這個(gè)機(jī)器學(xué)習(xí)處理配置工具是一個(gè)擴(kuò)展版的Unico GUI圖形用戶界面軟件(意法半導(dǎo)體所有MEMS傳感器演示板通用 [5])。Unico軟件連接基于STM32微控制器的主板[6] [5],實(shí)現(xiàn)MEMS傳感器與PC GUI之間的通信。該軟件以圖形和數(shù)字形式顯示傳感器輸出,并允許用戶保存或全面管理來(lái)自設(shè)備的數(shù)據(jù)。
Unico軟件允許訪問(wèn)MEMS傳感器寄存器,可以快速配置寄存器,并可以直接在設(shè)備上輕松測(cè)試配置??梢詫?dāng)前寄存器的配置保存為文本文件,并可以從現(xiàn)有文件中加載配置。這樣,可以在幾秒鐘內(nèi)重新設(shè)置傳感器。
基于統(tǒng)計(jì)/機(jī)器學(xué)習(xí)的算法要求收集數(shù)據(jù)日志。使用Unico GUI可以做到這一點(diǎn)。每個(gè)數(shù)據(jù)日志都必須關(guān)聯(lián)預(yù)期結(jié)果(例如,靜止,步行,跑步等)。該工具收集這些數(shù)據(jù)模式用于計(jì)算某些特征。
圖8:數(shù)據(jù)模式表
該工具可為原始數(shù)據(jù)選擇濾波器,選擇用過(guò)濾數(shù)據(jù)計(jì)算哪些特征,計(jì)算結(jié)果特征將是決策樹的屬性。幾個(gè)步驟后,該工具將生成一個(gè)屬性關(guān)系文件(ARFF)。
圖9:配置表
ARFF文件是決策樹生成過(guò)程的入口。決策樹可以由不同的機(jī)器學(xué)習(xí)工具生成。 懷卡托大學(xué)開發(fā)的軟件Weka [7]能夠從屬性關(guān)系文件開始生成決策樹。Weka工具可以評(píng)估哪些屬性適合決策樹。通過(guò)更改Weka中所有可用參數(shù),可以實(shí)現(xiàn)不同的決策樹配置。
圖10:在Weka里的屬性視圖
圖6:Weka中的決策樹生成
在決策樹生成后,可以將其上傳到意法半導(dǎo)體的軟件工具,完成MEMS傳感器的寄存器配置。
通過(guò)訪問(wèn)傳感器寄存器,Unico GUI可以讀取決策樹輸出狀態(tài)。
V.應(yīng)用案例
從第二部分介紹的示例開始,我們做了一些電流消耗測(cè)量,選擇了一個(gè)活動(dòng)識(shí)別算法作為示例。該算法的性能在模式數(shù)據(jù)庫(kù)中經(jīng)過(guò)明確評(píng)估,而且在普通通用微控制器上運(yùn)行時(shí)電流消耗約為數(shù)百微安。利用上一章介紹的支持軟件,可以輕松地配置MLP內(nèi)核,運(yùn)行該活動(dòng)識(shí)別算法。
表IV:電流要求
表IX 總結(jié)了在Cortex-M3 [8] [9] [10]上運(yùn)行活動(dòng)識(shí)別算法的電流要求,以及在LSM6DSOx MLP上運(yùn)行同一算法增加的電流需求。
VI.結(jié)論
世界網(wǎng)絡(luò)化程度越來(lái)越高:聯(lián)網(wǎng)設(shè)備可以交換大量數(shù)據(jù)。物聯(lián)網(wǎng)應(yīng)用依賴于三個(gè)關(guān)鍵模塊:感知、智能和通信。本文介紹了一種高度可配置的嵌入在慣性傳感器中的數(shù)字模塊。數(shù)字模塊為傳感器增加了智能,可以大幅降低系統(tǒng)級(jí)能耗。為了快速開發(fā)應(yīng)用原型,隨硬件一起提供了數(shù)字模塊配置支持軟件。上一章的應(yīng)用案例清楚地表明,數(shù)字模塊可大幅降低電流消耗。智能傳感器是賦能電池續(xù)航能力至關(guān)重要的新應(yīng)用的關(guān)鍵技術(shù)。
參考文獻(xiàn)
[1]S. Sumathi and S.N. Sivanandam: Introduction to Data Mining Principles, Studies in Computational Intelligence (SCI) 29, 1–20 (2006).
[2]V. Sze, Y. H. Chen, J. Einer, A. Suleiman and Z. Zhang, "Hardware for machine learning: Challenges and opportunities," 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, 2017, pp. 1-8.
[3]V. Sze, "Designing Hardware for Machine Learning: The Important Role Played by Circuit Designers," in IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 46-54 , Fall 2017.
[4]STMicroelectronics, “Bluetooth® low energy wireless system-on-chip,” BlueNRG-2 datasheet, November 2017, [DocID030675 Rev 2].
[5]STMicroelectronics Analog Mems Sensor Application Team , Unico GUI User manual, Rev. 5 October 2016.
[6]STMicroelectronics Technical Staff, STEVAL-MKI109V3 Professional MEMS Tool motherboard for MEMS adapter boards, July 2016
[7]Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011. Data Mining: Practical Machine Learning Tools and Techniques (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
[8]STMicroelectronics, “Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3 with 512KB Flash, 80KB SRAM, 16KB EEPROM, LCD, USB, ADC, DAC,” STM32L151xE STM32L152xE datasheet, Rev. 9 August 2017.
[9]STMicroelectronics Technical Staff, STM32 Nucleo-64 boards, NUCLEO-XXXXRX NUCLEO-XXXXRX-P data brief, Rev. 10 December 2017.
[10]STMicroelectronics Technical Staff, Sensor and motion algorithm software expansion for STM32Cube , X-CUBE-MEMS1data brief, Rev. 10 November 2017.
推薦閱讀:
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長(zhǎng)
- 上海國(guó)際嵌入式展暨大會(huì)(embedded world China )與多家國(guó)際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
傳感器
傳感器模塊
船型開關(guān)
串聯(lián)電阻公式
創(chuàng)智成
磁傳感器
磁環(huán)電感
磁敏三極管
磁性存儲(chǔ)器
磁性元件
磁珠電感
存儲(chǔ)器
大功率管
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感