MOS管開關(guān)時(shí)的米勒效應(yīng)!
發(fā)布時(shí)間:2019-06-03 責(zé)任編輯:wenwei
【導(dǎo)讀】米勒效應(yīng)在MOS驅(qū)動(dòng)中臭名昭著,他是由MOS管的米勒電容引發(fā)的米勒效應(yīng),在MOS管開通過程中,GS電壓上升到某一電壓值后GS電壓有一段穩(wěn)定值,過后GS電壓又開始上升直至完全導(dǎo)通。
米勒平臺(tái)形成的基本原理
MOSFET的柵極驅(qū)動(dòng)過程,可以簡(jiǎn)單的理解為驅(qū)動(dòng)源對(duì)MOSFET的輸入電容(主要是柵源極電容Cgs)的充放電過程;當(dāng)Cgs達(dá)到門檻電壓之后, MOSFET就會(huì)進(jìn)入開通狀態(tài);當(dāng)MOSFET開通后,Vds開始下降,Id開始上升,此時(shí)MOSFET進(jìn)入飽和區(qū);但由于米勒效應(yīng),Vgs會(huì)持續(xù)一段時(shí)間不再上升,此時(shí)Id已經(jīng)達(dá)到最大,而Vds還在繼續(xù)下降,直到米勒電容充滿電,Vgs又上升到驅(qū)動(dòng)電壓的值,此時(shí)MOSFET進(jìn)入電阻區(qū),此時(shí)Vds徹底降下來,開通結(jié)束。
由于米勒電容阻止了Vgs的上升,從而也就阻止了Vds的下降,這樣就會(huì)使損耗的時(shí)間加長(zhǎng)。(Vgs上升,則導(dǎo)通電阻下降,從而Vds下降)
米勒效應(yīng)在MOS驅(qū)動(dòng)中臭名昭著,他是由MOS管的米勒電容引發(fā)的米勒效應(yīng),在MOS管開通過程中,GS電壓上升到某一電壓值后GS電壓有一段穩(wěn)定值,過后GS電壓又開始上升直至完全導(dǎo)通。為什么會(huì)有穩(wěn)定值這段呢?因?yàn)?,在MOS開通前,D極電壓大于G極電壓,MOS寄生電容Cgd儲(chǔ)存的電量需要在其導(dǎo)通時(shí)注入G極與其中的電荷中和,因MOS完全導(dǎo)通后G極電壓大于D極電壓。米勒效應(yīng)會(huì)嚴(yán)重增加MOS的開通損耗。(MOS管不能很快得進(jìn)入開關(guān)狀態(tài))
所以就出現(xiàn)了所謂的圖騰驅(qū)動(dòng)??!選擇MOS時(shí),Cgd越小開通損耗就越小。米勒效應(yīng)不可能完全消失。
MOSFET中的米勒平臺(tái)實(shí)際上就是MOSFET處于“放大區(qū)”的典型標(biāo)志。
用用示波器測(cè)量GS電壓,可以看到在電壓上升過程中有一個(gè)平臺(tái)或凹坑,這就是米勒平臺(tái)。
米勒平臺(tái)形成的詳細(xì)過程
米勒效應(yīng)指在MOS管開通過程會(huì)產(chǎn)生米勒平臺(tái),原理如下。
理論上驅(qū)動(dòng)電路在G級(jí)和S級(jí)之間加足夠大的電容可以消除米勒效應(yīng)。但此時(shí)開關(guān)時(shí)間會(huì)拖的很長(zhǎng)。一般推薦值加0.1Ciess的電容值是有好處的。
下圖中粗黑線中那個(gè)平緩部分就是米勒平臺(tái)。
刪荷系數(shù)的這張圖 在第一個(gè)轉(zhuǎn)折點(diǎn)處:Vds開始導(dǎo)通。Vds的變化通過Cgd和驅(qū)動(dòng)源的內(nèi)阻形成一個(gè)微分。因?yàn)閂ds近似線性下降,線性的微分是個(gè)常數(shù),從而在Vgs處產(chǎn)生一個(gè)平臺(tái)。
米勒平臺(tái)是由于mos 的g d 兩端的電容引起的,即mos datasheet里的Crss 。
這個(gè)過程是給Cgd充電,所以Vgs變化很小,當(dāng)Cgd充到Vgs水平的時(shí)候,Vgs才開始繼續(xù)上升。
Cgd在mos剛開通的時(shí)候,通過mos快速放電,然后被驅(qū)動(dòng)電壓反向充電,分擔(dān)了驅(qū)動(dòng)電流,使得Cgs上的電壓上升變緩,出現(xiàn)平臺(tái)。
t0~t1: Vgs from 0 to Vth.Mosfet沒通.電流由寄生二極管Df.
t1~t2: Vgs from Vth to Va. Id
t2~t3: Vds下降.引起電流繼續(xù)通過Cgd. Vdd越高越需要的時(shí)間越長(zhǎng).
Ig 為驅(qū)動(dòng)電流.
開始降的比較快.當(dāng)Vdg接近為零時(shí),Cgd增加.直到Vdg變負(fù),Cgd增加到最大.下降變慢.
t3~t4: Mosfet 完全導(dǎo)通,運(yùn)行在電阻區(qū).Vgs繼續(xù)上升到Vgg.
平臺(tái)后期,VGS繼續(xù)增大,IDS是變化很小,那是因?yàn)镸OS飽和了。。。,但是,從樓主的圖中,這個(gè)平臺(tái)還是有一段長(zhǎng)度的。
這個(gè)平臺(tái)期間,可以認(rèn)為是MOS 正處在放大期。
前一個(gè)拐點(diǎn)前:MOS 截止期,此時(shí)Cgs充電,Vgs向Vth逼進(jìn)。
前一個(gè)拐點(diǎn)處:MOS 正式進(jìn)入放大期。
后一個(gè)拐點(diǎn)處:MOS 正式退出放大期,開始進(jìn)入飽和期。
當(dāng)斜率為dt 的電壓V施加到電容C上時(shí)(如驅(qū)動(dòng)器的輸出電壓),將會(huì)增大電容內(nèi)的電流:
I=C×dV/dt (1)
因此,向MOSFET施加電壓時(shí),將產(chǎn)生輸入電流Igate = I1 + I2,如下圖所示。
在右側(cè)電壓節(jié)點(diǎn)上利用式(1),可得到:
I1=Cgd×d(Vgs-Vds)/dt=Cgd×(dVgs/dt-dVds/dt) (2)
I2=Cgs×d(Vgs/dt) (3)
如果在MOSFET上施加?xùn)?源電壓Vgs,其漏-源電壓Vds 就會(huì)下降(即使是呈非線性下降)。因此,可以將連接這兩個(gè)電壓的負(fù)增益定義為:
Av=- Vds/Vgs (4)
將式(4)代入式(2)中,可得:
I1=Cgd×(1+Av)dVgs/dt (5)
在轉(zhuǎn)換(導(dǎo)通或關(guān)斷)過程中,柵-源極的總等效電容Ceq為:
Igate=I1+I2=(Cgd×(1+Av)+Cgs)×dVgs/dt=Ceq×dVgs/dt (6)
式中(1+Av)這一項(xiàng)被稱作米勒效應(yīng),它描述了電子器件中輸出和輸入之間的電容反饋。當(dāng)柵-漏電壓接近于零時(shí),將會(huì)產(chǎn)生米勒效應(yīng)。
Cds分流最厲害的階段是在放大區(qū)。為啥? 因?yàn)檫@個(gè)階段Vd變化最劇烈。平臺(tái)恰恰是在這個(gè)階段形成。你可認(rèn)為:門電流Igate完全被Cds吸走,而沒有電流流向Cgs。
注意數(shù)據(jù)手冊(cè)中的表示方法
Ciss=Cgs+Cgd
Coss=Cds+Cgd
Crss=Cgd
特別推薦
- 【“源”察秋毫系列】下一代半導(dǎo)體氧化鎵器件光電探測(cè)器應(yīng)用與測(cè)試
- 集成開關(guān)控制器如何提升系統(tǒng)能效?
- 工業(yè)峰會(huì)2024激發(fā)創(chuàng)新,推動(dòng)智能能源技術(shù)發(fā)展
- Melexis推出超低功耗車用非接觸式微功率開關(guān)芯片
- Bourns 發(fā)布新款薄型線性濾波器系列 SRF0502 系列
- 三菱電機(jī)開始提供用于xEV的SiC-MOSFET裸片樣品
- ROHM開發(fā)出支持更高電壓xEV系統(tǒng)的SiC肖特基勢(shì)壘二極管
技術(shù)文章更多>>
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進(jìn)再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項(xiàng)目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實(shí)技術(shù)再獲獎(jiǎng)分享供應(yīng)鏈挑戰(zhàn)下的自我成長(zhǎng)
- 上海國(guó)際嵌入式展暨大會(huì)(embedded world China )與多家國(guó)際知名項(xiàng)目達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索