MEMS新突破!加拿大成功地在MEMS器件中設(shè)計了一種AI技術(shù)
發(fā)布時間:2018-10-29 責(zé)任編輯:wenwei
【導(dǎo)讀】10月18日消息,據(jù)麥姆斯咨詢報道,加拿大魁北克Universite de Sherbrooke(舍布魯克大學(xué))的研究人員已經(jīng)成功地在MEMS(微機電系統(tǒng))器件中設(shè)計了一種AI(人工智能)技術(shù),這標(biāo)志著MEMS器件中首次嵌入了某種類型的AI能力。其研究成果是一種類似于人類大腦的神經(jīng)計算,只不過是在微型器件中運行。這項研究成果意味著可以在微型器件內(nèi)進行AI數(shù)據(jù)處理,從而為邊緣計算創(chuàng)造了無限可能。
MEMS傳感器即微機電系統(tǒng)(Microelectro Mechanical Systems),是在微電子技術(shù)基礎(chǔ)上發(fā)展起來的多學(xué)科交叉的前沿研究領(lǐng)域。經(jīng)過四十多年的發(fā)展,已成為世界矚目的重大科技領(lǐng)域之一。它涉及電子、機械、材料、物理學(xué)、化學(xué)、生物學(xué)、醫(yī)學(xué)等多種學(xué)科與技術(shù),具有廣闊的應(yīng)用前景。
截止到2010年,全世界有大約600余家單位從事MEMS的研制和生產(chǎn)工作,已研制出包括微型壓力傳感器、加速度傳感器、微噴墨打印頭、數(shù)字微鏡顯示器在內(nèi)的幾百種產(chǎn)品,其中MEMS傳感器占相當(dāng)大的比例。MEMS傳感器是采用微電子和微機械加工技術(shù)制造出來的新型傳感器。與傳統(tǒng)的傳感器相比,它具有體積小、重量輕、成本低、功耗低、可靠性高、適于批量化生產(chǎn)、易于集成和實現(xiàn)智能化的特點。同時,在微米量級的特征尺寸使得它可以完成某些傳統(tǒng)機械傳感器所不能實現(xiàn)的功能。
單根硅橫梁(紅色)及其驅(qū)動(黃色)和讀出(綠色和藍色)電極,實現(xiàn)了能夠進行非凡計算的MEMS器件
“我們?nèi)ツ暌呀?jīng)寫了一篇論文,從理論上展示了可以實現(xiàn)MEMS人工智能,”該研究論文的共同作者舍布魯克大學(xué)教授Julien Sylvestre介紹說,“我們最新的突破是展示了一種可以在實驗室中實現(xiàn)這一目標(biāo)的MEMS器件。”
該研究論文已發(fā)表于Journal of Applied Physics期刊,研究人員在他們的研究中展示了一種被稱為“儲備池計算”(reservoir computing)的AI方法。Sylvestre解釋說,要了解儲備池計算,需要了解一些關(guān)于人工神經(jīng)網(wǎng)絡(luò)如何運行的知識。
人工神經(jīng)網(wǎng)絡(luò)是一種模仿大腦進行信息處理的機器學(xué)習(xí)模型。前向神經(jīng)網(wǎng)絡(luò)適合處理靜態(tài)模式信息,而遞歸神經(jīng)網(wǎng)絡(luò)更適合處理動態(tài)模式信息。利用通過時間的反向傳播(BPTT)算法對遞歸神經(jīng)網(wǎng)絡(luò)進行訓(xùn)練計算代價很大,訓(xùn)練過程緩慢。研究發(fā)現(xiàn),在利用 BPTT 算法訓(xùn)練遞歸神經(jīng)網(wǎng)絡(luò)過程中,輸入層和中間層的連接權(quán)變化緩慢,只有輸出連接權(quán)變化明顯。
受到這一發(fā)現(xiàn)的啟發(fā),2001年和2002年分別提出了回聲狀態(tài)網(wǎng)絡(luò)和液體狀態(tài)機,隨后科研人員證明了回聲狀態(tài)網(wǎng)絡(luò)和液體狀態(tài)機本質(zhì)上一致,并概括為“儲備池計算”。
傳統(tǒng)儲備池計算示意圖
儲備池計算的核心思想就是利用一個儲備池代替?zhèn)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)中的中間層,輸入層到儲備池的輸入連接權(quán)和儲備池的內(nèi)部連接權(quán)均隨機生成并保持不變,訓(xùn)練過程中唯一需要確定的就是儲備池到輸出層的輸出連接權(quán)。儲備池計算大大簡化了遞歸神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程,并在信道均衡、時間序列預(yù)測、非線性系統(tǒng)建模、語音識別和自動控制等領(lǐng)域獲得了成功應(yīng)用。
儲備池計算最常用于依賴于時間的輸入(與圖像等靜態(tài)輸入相反)。因此,儲備池計算采用由時間相關(guān)輸入驅(qū)動的動力學(xué)系統(tǒng)。動力學(xué)系統(tǒng)選擇相對復(fù)雜,因此它對輸入的響應(yīng)可能與輸入本身完全不同。
此外,系統(tǒng)選擇具有多個自由度來響應(yīng)輸入。結(jié)果,輸入被“映射”到高維狀態(tài)空間,每個維度對應(yīng)于一個自由度。這產(chǎn)生了大量的信息“豐富性”,意味著輸入有許多不同的變換。
該系統(tǒng)的信號鏈和MEMS器件的SEM(掃描電子顯微鏡)圖像
“儲備池計算所使用的特殊技巧是線性地組合所有維度以獲得輸出,其輸出與我們希望計算機對給定輸入的答案相對應(yīng),”Sylvestre說,“這就是我們所說的儲備池計算‘訓(xùn)練’。這種線性組合的計算非常簡單,與其他AI方法不同,人們會嘗試修改動力學(xué)系統(tǒng)的內(nèi)部運行以獲得所需要的輸出。”
在大多數(shù)儲備池計算系統(tǒng)中,其動力學(xué)系統(tǒng)是軟件。在這項研究中,其動力學(xué)系統(tǒng)就是MEMS器件本身。為了實現(xiàn)這種動力學(xué)系統(tǒng),這款MEMS器件利用了非常薄的硅梁在空間中振蕩的非線性動力學(xué)特性。這些振蕩產(chǎn)生一種神經(jīng)網(wǎng)絡(luò),將輸入信號轉(zhuǎn)換為神經(jīng)網(wǎng)絡(luò)計算所需的更高維空間。
Sylvestre解釋說,很難修改MEMS器件的內(nèi)在工作原理,但儲備池計算并不需要,這就是他們使用這種方案在MEMS中嵌入AI的原因。
“我們的研究表明,在MEMS器件中使用非線性源來嵌入AI是完全可能的,”Sylvestre說,“這是一種構(gòu)建‘人工智能’器件的新方向,它可以做得非常小且高效。”
據(jù)Sylvestre介紹,這種MEMS器件的處理能力很難與臺式計算機相比較。“計算機跟我們這款MEMS器件的工作方式截然不同,”他解釋說,“計算機很大并需要消耗大量功率(數(shù)十瓦),但我們的MEMS可以小到裝在人類頭發(fā)尖端上,并以微瓦級的功率運行。并且,它們可以實現(xiàn)一些花式炫技的功能,比如對口語進行分類,這項任務(wù)可能會占用臺式計算機10%的資源。”
據(jù)Sylvestre表示,這種配備AI的MEMS技術(shù)的一個可能的應(yīng)用比如MEMS加速度計,加速度計收集的所有數(shù)據(jù)都可以在器件內(nèi)部進行處理,而不需要將數(shù)據(jù)再發(fā)送回計算機。
研究人員尚未專注研究如何為這種嵌入AI的MEMS器件供電,但這些器件極低的功耗可使它們僅依賴能量采集器便能支持運行,從而無需電池供電。有基于此,研究人員正在尋求將他們的AI MEMS方案應(yīng)用于傳感和機器人控制。
推薦閱讀:
特別推薦
- 隨時隨地享受大屏幕游戲:讓便攜式 4K 超高清 240Hz 游戲投影儀成為現(xiàn)實
- 在發(fā)送信號鏈設(shè)計中使用差分轉(zhuǎn)單端射頻放大器的優(yōu)勢
- 第9講:SiC的加工工藝(1)離子注入
- 移遠通信再推兩款新型4G、Wi-Fi、GNSS三合一組合天線
- Bourns 推出全新雙繞組系列,擴展屏蔽功率電感產(chǎn)品組合
- 貿(mào)澤開售AMD Versal AI Edge VEK280評估套件
- 安森美Hyperlux圖像傳感器將用于斯巴魯新一代集成AI的EyeSight系統(tǒng)
技術(shù)文章更多>>
- 高信噪比MEMS麥克風(fēng)驅(qū)動人工智能交互
- AMTS & AHTE South China 2024圓滿落幕 持續(xù)發(fā)力探求創(chuàng)新,攜手并進再踏新征程!
- 提高下一代DRAM器件的寄生電容性能
- 意法半導(dǎo)體Web工具配合智能傳感器加快AIoT項目落地
- 韌性與創(chuàng)新并存,2024 IIC創(chuàng)實技術(shù)再獲獎分享供應(yīng)鏈挑戰(zhàn)下的自我成長
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro