【導(dǎo)讀】POE (Power Over Ethernet)指的是在現(xiàn)有的以太網(wǎng)Cat.5布線基礎(chǔ)架構(gòu)不作任何改動(dòng)的情況下,在為一些基于IP的終端(如IP電話機(jī)、無線局域網(wǎng)接入點(diǎn)AP、網(wǎng)絡(luò)攝像機(jī)等)傳輸數(shù)據(jù)信號(hào)的同時(shí),還能為此類設(shè)備提供直流供電的技術(shù)。POE技術(shù)能在確保現(xiàn)有結(jié)構(gòu)化布線安全的同時(shí)保證現(xiàn)有網(wǎng)絡(luò)的正常運(yùn)作,最大限度地降低成本。
1 概述:
定義:PoE全稱Power Over Ethernet,是指10BASE-T、100BASE-TX、1000BASE-T以太網(wǎng)網(wǎng)絡(luò)供電,即數(shù)據(jù)線和電源線在同一根網(wǎng)線上傳輸,其可靠供電的距離最長(zhǎng)為100米。
PoE供電系統(tǒng)包含兩種設(shè)備PSE和PD,PSE(power-sourcing equipment),主要是用來給其它設(shè)備進(jìn)行供電的設(shè)備,PD(power device),在PoE供電系統(tǒng)中用來受電的設(shè)備。
2 POE主要供電特性
2.1 PSE特性參數(shù):
(1)電壓在44~57V之間,典型值為48V
(2)允許最大電流為550mA,最大啟動(dòng)電流為500mA
(3)典型工作電流為10~350mA,超載檢測(cè)電流為350~500mA
(4)在空載條件下,最大需要電流為5mA
2.2 PD功率等級(jí)
PD功率等級(jí)分為CLASS 0、CLASS 1、CLASS 2、CLASS 3、CLASS 4、CLASS 5
CLASS 0 設(shè)備需要的最高工作功率為0.44W ~12.95W
CLASS 1 設(shè)備需要的最高工作功率為0.44W ~3.84W
CLASS 2 設(shè)備需要的最高工作功率為3.84W ~6.49W
CLASS 3 設(shè)備需要的最高工作功率為6.49W ~12.95W
CLASS 4 設(shè)備需要的最高工作功率為12.95W ~25.5W
CLASS 5 設(shè)備需要的最高工作功率為>25W
設(shè)計(jì)師可以根據(jù)功率要求將他們的設(shè)備指定為特定的級(jí)別。
2.3 POE供電的工作過程
在分級(jí)階段,PSE將向PD施加15~20V的電壓,并通過測(cè)量電流大小來確定PD的特定級(jí)別。在此階段,PD的電源部分將被欠壓鎖定(UVLO)電路維持在無源狀態(tài),以便隔離開關(guān)級(jí),直至特征和分級(jí)階段完成。一旦分級(jí)完成后,PSE將會(huì)向PD提供全額工作電壓。
當(dāng)在一個(gè)網(wǎng)絡(luò)中布置PSE供電端設(shè)備時(shí),POE以太網(wǎng)供電工作過程如下所示:
檢測(cè):
首先PSE會(huì)發(fā)送一個(gè)測(cè)試電壓給在網(wǎng)設(shè)備以探測(cè)受電設(shè)備中的一個(gè)24.9kΩ共模電阻。測(cè)試信號(hào)開始為2.5V,然后提升到10V,這將有助于補(bǔ)償Cat-5電纜自身阻抗帶來的損失。因?yàn)檫@種電纜最長(zhǎng)可達(dá)100m。如果PSE檢測(cè)到來自PD的適當(dāng)阻抗特征(24.9kΩ),它便會(huì)繼續(xù)提升電壓。如果檢測(cè)不到特征阻抗,PSE將不會(huì)為電纜加電。受電設(shè)備電路中的齊納二極管會(huì)保證系統(tǒng)其余部分不受測(cè)試信號(hào)的干擾。
PD端設(shè)備分類:
當(dāng)檢測(cè)到受電端設(shè)備PD之后,PSE將向PD施加15~20V的電壓,并通過測(cè)量電流大小來確定PD的特定級(jí)別。如果除了探測(cè)到第一級(jí)的電阻外沒發(fā)現(xiàn)其他分級(jí)電路,該設(shè)備被定義成零級(jí)別。在此階段,PD的電源部分將被欠壓鎖定(UVLO)電路維持在無源狀態(tài),以便隔離開關(guān)級(jí),直至特征和分級(jí)階段完成。
開始供電:
分級(jí)完成后,在一個(gè)可配置時(shí)間(一般小于15μs)的啟動(dòng)期內(nèi),PSE設(shè)備開始從低電壓向PD設(shè)備
a)供電,直至提供48V的直流電源。
b)供電:為PD設(shè)備提供穩(wěn)定可靠48V的直流電,滿足PD設(shè)備不越過12.95W的功率消耗。
c)斷電:若PD設(shè)備從網(wǎng)絡(luò)上斷開時(shí),PSE就會(huì)快速地(一般在300~400ms之內(nèi))停止為PD設(shè)備供電,并重復(fù)檢測(cè)過程以檢測(cè)線纜的終端是否連接PD設(shè)備。
3 POE電源模塊簡(jiǎn)介
本次POE電源模塊采用MAX5969B和MAX5974A芯片來實(shí)現(xiàn),功率等級(jí)為CLASS 4的POE電源。POE電源模塊的電路拓?fù)浣Y(jié)構(gòu)采用反激式變換器實(shí)現(xiàn),運(yùn)用變壓器原邊反饋穩(wěn)壓以及副邊同步整流技術(shù)。輸入電壓范圍在36V~57V之間,輸出電壓穩(wěn)點(diǎn)在5V,具有過壓保護(hù)、過流保護(hù)等特點(diǎn)。如圖1所示為POE電源的原理圖。
3.1 POE電源模塊芯片
芯片MAX5969B為用電設(shè)備(PD)提供符合以太網(wǎng)供電(PoE)系統(tǒng)IEEE802.3af/at標(biāo)準(zhǔn)的完整接口。MAX5969B為PD提供檢測(cè)信號(hào)、分級(jí)信號(hào)以及帶有浪涌電流控制的集成隔離功率開關(guān)。發(fā)生浪涌期間,MAX5969B將電流限制在180mA以內(nèi),直到隔離功率MOSFET完全開啟后切換到較高的限流值(720mA至880mA)。器件具有輸入U(xiǎn)VLO,帶有較寬的滯回和長(zhǎng)周期干擾脈沖屏蔽,以補(bǔ)償雙絞線電纜的阻性衰減,確保上電/掉電期間無干擾傳輸。MAX5969B輸入端能夠承受高達(dá)100V的電壓。
MAX5969B芯片特性如下:
(1)兼容于IEEE 802.3af/at
(2)2級(jí)事件分級(jí)
(3)簡(jiǎn)易的墻上適配器接口
(4)0至5級(jí)POE分級(jí)
(5)100V絕對(duì)最大額定輸入
(6)180mA最大浪涌電流限制
(7)正常工作期間電流限制在720mA至880mA
(8)電流限制和折返式保護(hù)
(9)傳統(tǒng)的36V UVLO (MAX5969A)
(10)IEEE 802.3af/at兼容、40V UVLO (MAX5969B)
(11)過熱保護(hù)
(12)增強(qiáng)散熱的3mm × 3mm、10引腳TDFN封裝
如圖2所示為MAX5969B的引腳圖,接下來簡(jiǎn)要介紹下每個(gè)引腳。
圖2 MAX5969B引腳圖
表1 MAX5969B引腳簡(jiǎn)介
芯片MAX5969B工作過程的簡(jiǎn)單介紹,MAX5969B有4種不同的工作模式:
PD檢測(cè)、PD分級(jí)、標(biāo)記事件和PD供電模式。檢測(cè)模式是用來檢測(cè)設(shè)備是不是PD設(shè)備;分級(jí)模式是用來給PD設(shè)備確定輸入功率為多大;標(biāo)記事件一般用于2級(jí)分級(jí)模式檢測(cè);供電模式為正式給PD設(shè)備供電。
當(dāng)輸入電壓在1.4V和10.1V之間時(shí)器件進(jìn)入PD檢測(cè)模式;當(dāng)輸入電壓在12.6V和20V之間時(shí),器件進(jìn)入PD分級(jí)模式;一旦輸入電壓超過VON,器件則進(jìn)入PD供電模式。
檢測(cè)模式(1.4V≤ VIN ≤ 10.1V):
檢測(cè)模式下,PSE向VIN施加1.4V至10.1V范圍(最小步長(zhǎng)為1V)的兩個(gè)電壓,并記錄這兩點(diǎn)處的電流測(cè)量值。然后,PSE計(jì)算DV/DI以確保連接了24.9kΩ特征電阻。在VDD和DET之間連接特征電阻(RDET),以確保正確的特征檢測(cè)。檢測(cè)模式下,MAX5969B將DET拉低。當(dāng)輸入電壓超過12.5V時(shí),DET變?yōu)楦咦钁B(tài)。檢測(cè)模式下,MAX5969B的大多數(shù)內(nèi)部電路都處于關(guān)斷狀態(tài),偏置電流小于10μA。
分級(jí)模式(12.6V≤ VIN ≤ 20V) :
分級(jí)模式下,PSE根據(jù)PD所需的功耗對(duì)PD進(jìn)行分級(jí),使PSE能夠有效管理功率分配。0至5級(jí)的定義可通過查看數(shù)據(jù)手冊(cè)知道(IEEE 802.3af/at標(biāo)準(zhǔn)僅定義了0至4級(jí),5級(jí)用于特殊要求)。CLS與VSS之間連接一個(gè)外部電阻(RCLS),用于設(shè)置分級(jí)電流。PSE通過向PD輸入施加電壓并測(cè)量PSE輸出的電流來確定PD的級(jí)別。當(dāng)PSE施加的電壓在12.6V和20V之間時(shí)。PSE使用分級(jí)電流信息來對(duì)PD功率要求進(jìn)行分級(jí)。分級(jí)電流包括RCLS吸收的電流和MAX5969B的電源電流。所以PD吸收的總電流在IEEE 802.3af/at標(biāo)準(zhǔn)的指標(biāo)范圍之內(nèi)。當(dāng)器件處于供電模式時(shí),則關(guān)閉分級(jí)電流。
供電模式(喚醒模式)
當(dāng)VIN上升到欠壓鎖定門限(VON)以上時(shí),MAX5969B進(jìn)入供電模式。當(dāng)VIN上升到VON以上時(shí),MAX5969B開啟內(nèi)部n溝道隔離MOSFET,將VSS連接至RTN,內(nèi)部浪涌電流限制設(shè)置為135mA (典型值)。當(dāng)RTN處的電壓接近VSS并且浪涌電流降至浪涌門限以下時(shí),隔離MOSFET完全開啟。一旦完全開啟隔離MOSFET,MAX5969B將電流限制更改為800mA。在功率MOSFET完全開啟之前,電源就緒開漏輸出(PG)保持為低電平,持續(xù)時(shí)間至少為,以在浪涌期間禁止后續(xù)的DC-DC轉(zhuǎn)換器。
芯片還有一些其它的工作狀態(tài),例如欠壓鎖定、熱關(guān)斷保護(hù)、墻上電源適配器檢測(cè)和工作等。
芯片MAX5974A為寬輸入電壓范圍、有源鉗位、電流模式PWM控制器,用于控制以太網(wǎng)供電(PoE)的用電設(shè)備(PD)中的正激轉(zhuǎn)換器。MAX5974A適用于通用或電信系統(tǒng)的輸入電壓范圍。芯片MAX5974A獨(dú)特的電路設(shè)計(jì)能夠在不需要光耦的前提下獲得穩(wěn)定的輸出。
MAX5974A有很多特性,以下簡(jiǎn)要介紹幾個(gè):
(1)峰值電流模式控制、有源鉗位、正激PWM控制器
(2)無需光耦即可獲得穩(wěn)壓輸出
(3)100kHz至600kHz可編程、±8%抖動(dòng)控制的開關(guān)頻率,可同步至高達(dá)1.2MHz
(4)可編程頻率抖動(dòng),支持低EMI、擴(kuò)頻工作
(5)可編程死區(qū)時(shí)間、PWM軟啟動(dòng)、電流斜率補(bǔ)償
如圖3所示為芯片的引腳圖。
圖3 MAX5974引腳圖
表2 MAX5974A引腳簡(jiǎn)介
3.2 輸入電路以及輸出電路簡(jiǎn)介
輸入電壓取自于網(wǎng)絡(luò)端口的48V電源,輸入電壓經(jīng)過兩個(gè)整流橋D1、D2,其中D26是一個(gè)瞬態(tài)抑制二極管SMBJ54A用來保護(hù)輸入過壓。
輸出電壓通過反激變壓器的副邊整流后得到,由于整流后脈動(dòng)電壓較大,所以會(huì)在整流后添加輸出濾波電容,輸出濾波電容一般會(huì)選擇幾個(gè)大電容再加一個(gè)小電容并聯(lián),大電容起到儲(chǔ)能和濾波的作用,小電容用來高頻去耦,幾個(gè)電容并聯(lián)可以將輸出電阻降到最小。本模塊POE電源選擇3顆封裝為1206,容值大小為47uF的陶瓷電容。反激變壓器選擇SIR412DP開關(guān)管實(shí)現(xiàn)有源整流,利用變壓器副邊繞組來獲得驅(qū)動(dòng)電壓,這樣變壓器原邊就不需要消磁電路或者吸收電路,而是把能量用來驅(qū)動(dòng)SIR412DP開關(guān)管,實(shí)現(xiàn)同步整流技術(shù)。開關(guān)管的漏極和源極并聯(lián)RCD吸收電路,用來抑制開關(guān)管漏源端的電壓尖峰而達(dá)到保護(hù)開關(guān)管的目的。雖然說MOSFET的是一種壓控壓型的開關(guān)管,但是對(duì)于開關(guān)管開通和關(guān)閉都是給開關(guān)管的寄生電容充電來打開或關(guān)閉,這就需要一定的驅(qū)動(dòng)電流。所以在驅(qū)動(dòng)電路中串聯(lián)一個(gè)10歐姆的電阻。
3.3 芯片外圍電路簡(jiǎn)介
芯片MAX5969B主要作用體現(xiàn)在剛剛上電的時(shí)候和PSE供電模塊用來通信的芯片,對(duì)于每一個(gè)POE電源來說,這種類似的芯片是必不可少的。市面上有些號(hào)稱是POE電源的往往只是把48V的電壓變成5V或者其它的電壓,在上電的時(shí)候并沒有檢測(cè)、分級(jí)的階段,這對(duì)于受電設(shè)備來說是危險(xiǎn)的。檢測(cè)電源是POE電源還是非POE電源的一般方法是,拿萬用表測(cè)量供電腳,一般是網(wǎng)絡(luò)端口的4,5、7,8腳,如果端口輸出是穩(wěn)定的48V電壓,這說明電源是非POE電源;如果測(cè)量的電壓在2~10V跳動(dòng),則說明電源是POE電源,電壓跳動(dòng)是在對(duì)PD端進(jìn)行檢測(cè)。
芯片MAX5969B的VDD是電源引腳,VDD和VSS之間接有0.1uF的電容用來旁路,電容C7和C13用來儲(chǔ)能和濾波。
DET接一個(gè)24.9K的電阻到Vin,這個(gè)電阻是特征電阻不可更改,要是把這個(gè)電阻的阻值改變了,POE電源工作會(huì)不正常。
VSS引腳是接輸入整流過后的地端,VSS內(nèi)部通過MOSFET管和變壓器原邊的接地端相連。當(dāng)芯片處于檢測(cè)與分級(jí)階段時(shí)候,內(nèi)部MOSFET處于斷開的狀態(tài)。
RTN引腳接變壓器原邊的地端,是后繼DC-DC的功率地端。
WAD引腳是用來接墻上適配器電源供電,本模塊的POE電源沒有用上墻上適配器,但是在電路設(shè)計(jì)的時(shí)候也考慮到了,只是沒有焊接相關(guān)器件。
PG引腳內(nèi)部是MOSFET漏極輸出,在芯片內(nèi)部的MOSFET完全開啟之前,PG保持為低電平,PG端接MAX5974A的使能端,故PG在保持低電平期間,MAX5974A是處于不工作狀態(tài)。PG外接1nF的電容旁路。
2EC引腳是2級(jí)事件檢測(cè)腳,本模塊沒有用上直接上拉100K電阻到RTN,以防PD設(shè)備處于2級(jí)狀態(tài)時(shí),2EC引腳有一個(gè)回路。
CLS引腳是分級(jí)電阻輸入引腳,CLS引腳接多大電阻到VSS地端,就決定了POE電源是處于哪一級(jí)??刹榭磾?shù)據(jù)手冊(cè)知當(dāng)接30.9歐姆電阻時(shí),PD設(shè)備設(shè)置為4級(jí)電路狀態(tài),也就是說PD設(shè)備要消耗12.95-25.5W的功率。
芯片MAX5974A是一款電源管理芯片,芯片內(nèi)部集成了許多功能,只要根據(jù)芯片數(shù)據(jù)手冊(cè)推薦的外圍電路搭建方法,只需簡(jiǎn)單的配置些電容和電阻很快就可以設(shè)計(jì)出一塊電源模塊。接下來將介紹芯片每個(gè)引腳外圍電路的搭建,來更好的理解芯片以及反激式開關(guān)電源。
DT引腳是用來設(shè)置死區(qū)時(shí)間的,由于MAX5974A這款芯片提供了兩個(gè)柵極驅(qū)動(dòng)器輸出,一個(gè)是NDRV主開關(guān)柵極驅(qū)動(dòng)器輸出,是用來驅(qū)動(dòng)變壓器原邊是處于斷開狀態(tài)還是出來接通狀態(tài)。一個(gè)是AUXDRV是用來給變壓器副邊開關(guān)管實(shí)現(xiàn)同步整流的驅(qū)動(dòng)信號(hào),由于變壓器原邊開關(guān)管和變壓器副邊開關(guān)管不能夠同時(shí)開啟,盡管NDRV和AUXDRV是互補(bǔ)輸出的,但是由于開關(guān)管本身的開通和關(guān)斷過程不理想,在開通和關(guān)斷的時(shí)候有一定的時(shí)間延遲,故此需要添加一定的死區(qū)時(shí)間。死區(qū)時(shí)間設(shè)置時(shí)間在40ns至400ns之間,死區(qū)時(shí)間的設(shè)置是通過外接一個(gè)電阻到RTN地端,具體多大的電阻設(shè)置多長(zhǎng)的死區(qū)時(shí)間,可通過如下公式得到:
本模塊選擇=27KW,死區(qū)時(shí)間就為108ns,對(duì)于這個(gè)死區(qū)時(shí)間已經(jīng)足夠了,因?yàn)楸敬问褂玫腗OSFET的延遲時(shí)間都在40ns以內(nèi)。
DITHER/SYNC引腳為頻率加抖編程或者同步連接引腳。在DITHER/SYNC和RTN地之間連接一個(gè)電容,在DITHER/SYNC和RT之間連接一個(gè)電阻,可以在范圍內(nèi)對(duì)轉(zhuǎn)換器的開關(guān)頻率加抖,從而降低EMI。具體過程是DITHER/SYNC處的電流源以50uA電流將電容C14充電至2V。達(dá)到該點(diǎn)后,以50uA電流將C14放電至0.4V。電容充電和放電會(huì)在DITHER/SYNC上產(chǎn)生一個(gè)三角波,峰值分別為0.4V和2V,通常情況下,頻率為1KHZ。電容C14的計(jì)算公式為:
本模塊選擇C14=10nF,其中連接電阻公式如下:
其中,%DITHER為加抖量,表示為開關(guān)頻率的百分比。將RDITHER設(shè)置為10 RRT,產(chǎn)生±10%的抖動(dòng)。本模塊中沒有焊接次電阻,但是也預(yù)留了位置,需要的時(shí)候可以焊上次電阻。
RT引腳是開關(guān)頻率編程電阻連接。將連接至RTN地,設(shè)置PWM開關(guān)頻率在100KHZ~600KHZ之間。可參考如下公式:
為PWM波的開關(guān)頻率,本模塊電源選擇為29.4K,也就是說開關(guān)頻率為296KHZ。
FFB引腳是頻率折返門限編程輸入。將一個(gè)電阻從FFB連接至RTN地,設(shè)置輸出平均電流門限。低于該門限時(shí),轉(zhuǎn)換器將開關(guān)頻率折返至其原始值的1/2。該引腳連接至RTN地時(shí),禁用頻率折返功能。這腳的功能是為了在輕載的時(shí)候降低開關(guān)頻率,以降低開關(guān)損耗,提高轉(zhuǎn)換器效率,節(jié)約能源的作用。連接的電阻計(jì)算可通過如下公式得到:
其中,RFFB為FFB和RTN地之間的電阻,ILOAD(LIGHT)為輕載條件下觸發(fā)頻率折返的電流,RCS為連接在CS和RTN地之間的檢測(cè)電阻,IFFB為FFB源出至RFFB的電流(30µA,典型值)。本模塊通過一個(gè)0歐姆電阻相連。
COMP引腳是跨導(dǎo)放大器輸出和PWM比較器輸入。使用電平轉(zhuǎn)換器將COMP轉(zhuǎn)換至低電平,并連接至PWM比較器的反相輸入。此引腳是用來改善環(huán)路穩(wěn)定性,使輸出電壓穩(wěn)定紋波小。本模塊采用二型環(huán)路補(bǔ)償網(wǎng)絡(luò)來實(shí)現(xiàn)環(huán)路的穩(wěn)定,具體由原理圖中C15、C16和R10構(gòu)成的電路來完成。
FB引腳是跨導(dǎo)放大器反相輸入。MAX5974A包含一個(gè)帶有采樣-保持輸入的內(nèi)部誤差放大器。誤差放大器的同相輸入連接至內(nèi)部基準(zhǔn),在反相輸入提供反饋。高開環(huán)增益和單位增益帶寬可實(shí)現(xiàn)良好的閉環(huán)帶寬和瞬態(tài)響應(yīng)。采用下式計(jì)算變壓器原邊耦合的輸出電壓:
MAX5974A的為1.52V,其中反饋電壓可通過如下公式得到:
本模塊的
本模塊的反饋電壓取自于變壓器原邊耦合的電壓,而沒有使用傳統(tǒng)的利用TL431和PC817的方案來獲得反饋電壓從而使輸出電壓穩(wěn)定,但是在電路設(shè)計(jì)的時(shí)候也預(yù)留了TL431和PC817反饋的方案來獲得輸出電壓穩(wěn)定。變壓器原邊耦合的電壓還有一個(gè)作用就是給MAX5974A芯片提供電源輸入??赏ㄟ^設(shè)置反饋部分的電壓來改變輸出電壓,可以由如下公式可知:
其中, VOUT為輸出電壓, NC/NO為耦合輸出與主輸出繞組的匝數(shù)比。選擇的匝數(shù)比要使VCOUPLED高于UVLO關(guān)斷電平(7.35V,最大值)達(dá)一定裕量,該裕量由“跨越”一次掉電所需的保持時(shí)間決定。
SGND引腳為信號(hào)地引腳連接到RTN地。
CSSC引腳帶有斜率補(bǔ)償輸入的電流檢測(cè)。連接在CSSC與CS之間的電阻用于設(shè)置斜率補(bǔ)償量。器件在CSSC端產(chǎn)生電流斜坡,其峰值在振蕩器占空比為80%時(shí)達(dá)50μA。連接在CSSC至CS的外部電阻將該電流斜坡轉(zhuǎn)換至可編程斜率補(bǔ)償幅值,加至電流檢測(cè)信號(hào),用于穩(wěn)定峰值電流模式控制環(huán)路。斜率補(bǔ)償信號(hào)的變化率由下式給出:
其中,m為斜率補(bǔ)償信號(hào)的變化率;RCSSC為連接在CSSC和CS之間的電阻值,用于設(shè)置變化率;fSW為開關(guān)頻率。本模塊選擇電阻R18為4.02K。
CS引腳是電流檢測(cè)輸入。用于平均電流檢測(cè)和逐周期限流的電流檢測(cè)連接。峰值限流觸發(fā)電壓為400mV,反向限流觸發(fā)電壓為-100mV。連接在n溝道MOSFET源極和RTN地之間的電流檢測(cè)電阻(典型應(yīng)用電路中的RCS)用于設(shè)置限流值。限流比較器的電壓觸發(fā)電平(VCS-PEAK)為400mV。利用下式計(jì)算RCS值:
其中,IPRI為變壓器原邊的峰值電流,該電流也流經(jīng)MOSFET。當(dāng)該電流(通過電流檢測(cè)電阻)產(chǎn)生的電壓超過限流比較器門限時(shí),MOSFET驅(qū)動(dòng)器(NDRV)在35ns()內(nèi)終止電流導(dǎo)通周期。本模塊的限流電阻選擇R21、R25為1206封裝阻值為0.25歐姆。利用一個(gè)小型RC網(wǎng)絡(luò),對(duì)檢測(cè)波形上的前沿尖峰進(jìn)行額外的濾波。濾波電路的角頻率設(shè)置在10MHz至20MHz之間。本模塊選擇R26為499歐姆和電容C24為330pF。
PGND引腳為功率地接RTN地端。PGND為柵極驅(qū)動(dòng)器的開關(guān)電流回路。
NDRV引腳為主開關(guān)柵極驅(qū)動(dòng)器輸出。此腳通過一個(gè)小電阻接到主開關(guān)管SI7450的柵極來驅(qū)動(dòng)SI7450。此腳輸出的頻率為296KHZ。
AUXDRV引腳pMOS有源鉗位開關(guān)柵極驅(qū)動(dòng)器輸出。AUXDRV亦可驅(qū)動(dòng)脈沖變壓器,用于同步反激應(yīng)用。此引腳和NDRV為互補(bǔ)輸出,本模塊是采用變壓器副邊耦合來驅(qū)動(dòng)輸出整流開關(guān)管,故此腳并沒有用上,處于懸空狀態(tài),但是在設(shè)計(jì)的時(shí)候,把其驅(qū)動(dòng)的外圍電路也包含了進(jìn)去,需要用其來驅(qū)動(dòng)輸出整流開關(guān)管時(shí)可以把相關(guān)電路焊上,但是不能同時(shí)有變壓器副邊耦合驅(qū)動(dòng)和用AUXDRV驅(qū)動(dòng)存在。
VC引腳是轉(zhuǎn)換器電源輸入。IN具有寬UVLO滯回,能夠?qū)崿F(xiàn)高效率電源設(shè)計(jì)。當(dāng)使用使能輸入EN設(shè)置電源的UVLO電平時(shí),在IN和PGND之間連接一個(gè)齊納二極管,確保VIN總是被鉗位至低于其絕對(duì)最大額定值26V。本模塊的電源輸入取自變壓器原邊耦合的電壓,變壓器原邊耦合的電壓通過D10整流后給芯片的VC,芯片VC和RTN地之間接有22V穩(wěn)壓管D28以及電容C4和C37。其中與二極管D10并聯(lián)的RC電路是用來,在上電瞬間防止二極管有大電流的沖擊,在上電瞬間電流先通過RC電路,而保護(hù)二極管D10。
EN引腳使能輸入。當(dāng)EN電壓低于VENF時(shí),柵極驅(qū)動(dòng)器被禁用,器件處于低功耗UVLO模式。當(dāng)EN電壓高于VENR時(shí),器件檢查其它使能條件。使能輸入EN用于使能或禁用器件。EN連接至IN時(shí),器件始終保持工作。EN連接至地時(shí),可禁用器件,并將電流損耗降低至150μA。本模塊的EN端通過一個(gè)100K的電阻連接到VC端,EN端也和MAX5969B的PG引腳相連,以用于在供電之前禁用MAX5974B。
DCLMP引腳是前饋?zhàn)畲笳伎毡茹Q位編程輸入。在輸入電源電壓DCLMP和GND之間連接一個(gè)電阻分壓器。DCLMP上的電壓設(shè)置轉(zhuǎn)換器的最大占空比(DMAX),該值與輸入電源電壓成反比,所以MOSFET在發(fā)生瞬態(tài)期間仍然處于受保護(hù)狀態(tài)??梢杂扇缦鹿降玫椒謮弘娮瑁?/div>
本模塊
分別為原理圖中的R8和R7。
SS引腳是軟啟動(dòng)編程電容連接。在SS和GND之間連接一個(gè)電容,設(shè)置軟啟動(dòng)周期。該電容還決定打嗝模式限流的重啟時(shí)間。SS和GND之間的電阻亦可用于設(shè)置低于75%的DMAX。在SS和GND之間連接一個(gè)電容CSS,設(shè)置軟啟動(dòng)時(shí)間。VSS控制啟動(dòng)期間的振蕩器占空比,使占空比緩慢、平滑地增大至其穩(wěn)態(tài)值。按下式計(jì)算CSS值:
其中,ISS-CH (10μA,典型值)為軟啟動(dòng)期間的CSS充電電流,tSS為設(shè)置的軟啟動(dòng)時(shí)間。通過在SS和地之間連接電阻,可將SS上的電壓設(shè)為低于2V。VSS計(jì)算如下:
本模塊電源選擇電容C3=22nF,電阻R35=1MW。
3.3 變壓器和開關(guān)管的選擇
反激變壓器設(shè)計(jì)的成功與否很大一部分要取決于變壓器設(shè)計(jì)的好壞,不同的電路拓?fù)浣Y(jié)構(gòu)有不同的計(jì)算公式,但是基本都是基于AP法來設(shè)計(jì)變壓器。有些做電源具有豐富經(jīng)驗(yàn)的人往往能夠設(shè)計(jì)出很好的變壓器,并且在設(shè)計(jì)的時(shí)候并沒有過多的計(jì)算。通過公式所計(jì)算出來的變壓器參數(shù)往往只有變壓器匝比、線徑、變壓器磁芯以及變壓器骨架等,要想設(shè)計(jì)一個(gè)好的變壓器只有這些是不夠的,還要考慮變壓器的繞法,變壓器怎樣繞是一個(gè)重要的參數(shù)。因?yàn)椴煌淖儔浩骼@法所得到的變壓器最終性能有很大差別,比如采用三明治繞法的變壓具有較低的漏感。反正變壓器的設(shè)計(jì)有太多東西需要考慮,如果所繞的變壓器性能較差,可以適當(dāng)調(diào)整匝數(shù)、改變繞法或者換一個(gè)變壓器磁芯等。
本模塊選用外購(gòu)的變壓器Sumida T225,因?yàn)楸灸K的開關(guān)頻率較高,對(duì)于變壓器尺寸也有所要求,經(jīng)過多次討論決定外購(gòu)變壓器而不是自己繞。通過測(cè)試發(fā)現(xiàn)此變壓器性能很好,變壓器在重載的時(shí)候沒有什么異常發(fā)生,輸出電壓也正常。
反激式開關(guān)電源的開關(guān)管選擇要滿足漏源能夠承受輸入電壓外加變壓器副邊耦合過來的電壓的1.5倍,才能保證開關(guān)管不會(huì)在關(guān)斷的時(shí)候被擊穿。開關(guān)管漏源也要能夠流過2倍的輸入電流,才能保證開關(guān)管不會(huì)因過流導(dǎo)致?lián)p壞。開關(guān)管的損耗在整個(gè)電源模塊損耗中占有一定比例,一般會(huì)選擇開關(guān)管上升和下降時(shí)間短的MOSFET,保證在開關(guān)管導(dǎo)通和關(guān)閉的一段時(shí)間里電壓和電流疊加的部分少,降低開關(guān)管的損耗。
4 電源PDN和紋波噪聲
4.1 電源PDN
電源紋波噪聲測(cè)試是一個(gè)比較復(fù)雜的測(cè)試難題,不同方法測(cè)量到的結(jié)果不同,即使同一種測(cè)試方法不同人測(cè)試結(jié)果一般也會(huì)存在差別。
對(duì)于終端類產(chǎn)品,不管是CPU、GPU、DDR等,其芯片內(nèi)部都有成千上萬的晶體管,芯片內(nèi)不同的電路需要不同的電源供電,常見有Vcore、Vcpu、Vmem、VIO、Vgpu、Vpll等,這些電源有DC-DC電源模塊供電,也有LDO電源模塊供電,都統(tǒng)一由PMU來管理。
如圖4所示,為芯片的PDN圖,芯片的供電環(huán)路從穩(wěn)壓模塊VRM開始,到PCB的電源網(wǎng)絡(luò),芯片的ball引腳,芯片封裝的電源網(wǎng)絡(luò),最后到達(dá)die. 當(dāng)芯片工作在不同負(fù)載時(shí),VRM無法實(shí)時(shí)響應(yīng)負(fù)載對(duì)電流快速變化的需求,在芯片電源電壓上產(chǎn)生跌落,從而產(chǎn)生了電源噪聲。對(duì)于開關(guān)電源模塊的VRM,電源自身會(huì)產(chǎn)生和開關(guān)頻率一致的電源紋波,始終疊加在電源上輸出。對(duì)于電源噪聲,需要在封裝、PCB上使用去耦電容,設(shè)計(jì)合理的電源地平面,最終濾去電源噪聲。對(duì)于電源紋波,需要增大BULK電感或者BULK電容。
圖4 芯片電源分布網(wǎng)絡(luò)(PDN)示意圖
對(duì)于板級(jí)PCB設(shè)計(jì),當(dāng)頻率達(dá)到一定頻率后,由于走線的ESL、電容的ESL的影響,已經(jīng)無法濾去高頻噪聲,業(yè)界認(rèn)為PCB只能處理100MHz以內(nèi)的噪聲,更高頻率的噪聲需要封裝或者die來解決。因此對(duì)于板級(jí)電源噪聲測(cè)試,使用帶寬500M以上的示波器就足夠了。一般情況下,示波器的帶寬越大,低噪也會(huì)隨之上升,因此建議測(cè)試電源時(shí)示波器的帶寬限制為1GHz。
4.2 電源紋波和電源噪聲
電源紋波和電源噪聲是一個(gè)比較容易混淆的概念,如下圖5所示,藍(lán)色波形為電源紋波,紅色波形為電源噪聲。電源紋波的頻率為開關(guān)頻率的基波和諧波,而噪聲的頻率成分高于紋波,是由板上芯片高速I/O的開關(guān)切換產(chǎn)生的瞬態(tài)電流、供電網(wǎng)絡(luò)的寄生電感、電源平面和地平面之間的電磁輻射等諸多因素產(chǎn)生的。因此,在PMU側(cè)測(cè)量電源輸出為紋波,而在SINK端(耗電芯片端,如AP、EMMC、MODEM等)測(cè)量的是電源噪聲。
圖5 電源紋波噪聲圖
電源紋波測(cè)量時(shí),限制示波器帶寬為20MHz,測(cè)量PMU電源輸出的波形峰峰值即可電源紋波。由于PMU芯片在設(shè)計(jì)完成后,芯片廠商會(huì)做負(fù)載測(cè)試,測(cè)試PMU在不同負(fù)載時(shí)輸出電源的紋波情況,因此在終端類產(chǎn)品板上,沒必要在做這方面的測(cè)試,紋波大小參考PMU手冊(cè)即可。
電源噪聲測(cè)試時(shí),測(cè)試點(diǎn)放在SINK端,由于SINK端工作速度大都在幾十MHz以上,因此示波器帶寬設(shè)置為全頻段(最高為示波器帶寬上限),測(cè)試點(diǎn)要盡量靠近測(cè)試芯片的電源引腳,如果存在多個(gè)電源引腳,應(yīng)該選擇距離PMU最遠(yuǎn)端的那個(gè)引腳。電源噪聲跟PCB布局布線,DECAP電容的位置的位置相關(guān),同時(shí)電源噪聲影響CPU的工作狀態(tài)和單板的EMI,終端類產(chǎn)品板需要對(duì)每塊單板測(cè)試電源噪聲。
5 常見的紋波噪聲測(cè)試方案
5.1 紋波噪聲測(cè)試基本要求
目前芯片的工作頻率越來越高,工作電壓越來越低,工作電流越來越大,噪聲要求也更加苛刻,以MSM8974的CORE核為例,電壓為0.9V,電流為3A,要求25MHz時(shí),交流PDN阻抗為22mohm,電源噪聲要求在±33mV以內(nèi)。對(duì)于DDR3芯片,要求VREF電源噪聲在±1%以內(nèi),若1.5V供電,則噪聲峰峰值不大于30mV。
這類低噪聲的電源測(cè)試非常具有挑戰(zhàn),影響其測(cè)量準(zhǔn)確性的主要有如下幾點(diǎn):
(1)示波器通道的底噪;
(2)示波器的分辨率(示波器的ADC位數(shù));
(3)示波器垂直刻度最小值(量化誤差);
(4)探頭帶寬;
(5)探頭GND和信號(hào)兩個(gè)測(cè)試點(diǎn)的距離;
(6)示波器通道的設(shè)置;
在測(cè)試電源噪聲時(shí),要求如下條件:
(1)需要在重負(fù)載情況下測(cè)試電源紋波;
(2)測(cè)試電源紋波時(shí)應(yīng)該將CPU、GPU、DDR頻率鎖定在最高頻;
(3)測(cè)試點(diǎn)應(yīng)該在SINK端距離PMU最遠(yuǎn)的位置;
(4)測(cè)試點(diǎn)應(yīng)該靠近芯片的BALL;
(5)帶寬設(shè)置為全頻段;
(6)示波器帶寬大于500MHz;
(7)噪聲波形占整個(gè)屏幕的2/3以上或者垂直刻度已經(jīng)為最小值;
(8)探頭地和信號(hào)之間的回路最短,電感最??;
(9)測(cè)試時(shí)間大于1min,采樣時(shí)間1ms以上,采樣率500Ms/s以上;
(10)紋波噪聲看Pk-Pk值,關(guān)注Max、Min值;
5.2 高通濾波器特性分析
示波器有AC和DC兩種耦合方式,當(dāng)采用AC耦合時(shí),其內(nèi)部等效電路如圖6所示,C為隔值電容,R為終端對(duì)地阻抗,Vi為輸入信號(hào),Vo為測(cè)量信號(hào),濾波器的截止頻率為
為信號(hào)頻率,則有:
圖6加隔值電容后高通濾波器等效電路
表3 不同隔值電容對(duì)應(yīng)的頻點(diǎn)
5.3 無源探頭DC耦合測(cè)試
使用無源探頭DC耦合測(cè)試,示波器內(nèi)部設(shè)置為DC耦合,耦合阻抗為1Mohm,此時(shí)無源探頭的地線接主板地,信號(hào)線接待測(cè)電源信號(hào)。這種測(cè)量方法可以測(cè)到除DC以外的電源噪聲紋波。
如圖7所示,當(dāng)采用普通的鱷魚夾探頭時(shí),由于地和待測(cè)信號(hào)之間的環(huán)路太大,而探頭探測(cè)點(diǎn)靠近高速運(yùn)行的IC芯片,近場(chǎng)輻射較大,會(huì)有很多EMI噪聲輻射到探頭回路中,使測(cè)試的數(shù)據(jù)不準(zhǔn)確。為了改善這種情況,推薦用無源探頭測(cè)試紋波時(shí),使用右圖中的探頭,將地信號(hào)纏繞在信號(hào)引腳上,相當(dāng)于在地和信號(hào)之間存在一個(gè)環(huán)路電感,對(duì)高頻信號(hào)相當(dāng)于高阻,有效抑制由于輻射產(chǎn)生的高頻噪聲。更多時(shí)候,建議測(cè)試者采用第三種測(cè)試方法,將一個(gè)漆包線繞在探頭上,然后將漆包線的焊接到主板地網(wǎng)絡(luò)上,移動(dòng)探頭去測(cè)試每一路電源紋波噪聲。同時(shí)無源探頭要求盡量采用1:1的探頭,杜絕使用1:10的探頭。
圖7 無源探頭地線兩種處理方法
對(duì)于示波器,若垂直刻度為xV/div,示波器垂直方向?yàn)?0div,滿量程為10xV,示波器采樣AD為8位,則量化誤差為10x/256 V。例如一個(gè)1V電源,噪聲紋波為50mV,如果要顯示這個(gè)信號(hào),需要設(shè)置垂直刻度為200mV/div,此時(shí)量化誤差為7.8mV,如果把直流1V通過offset去掉,只顯示紋波噪聲信號(hào),垂直刻度設(shè)置為10mV即可,此時(shí)的量化誤差為0.4mV。
使用無源探頭DC耦合測(cè)試,示波器設(shè)置如下:
(1)1Mohm端接匹配;
(2)DC耦合;
(3)全帶寬;
(4)offset設(shè)置為電源電壓;
5.4 無源探頭AC耦合測(cè)試
使用無源探頭DC耦合需要設(shè)置offset,對(duì)于電源電壓不穩(wěn)定的情況,offset設(shè)置不合理,會(huì)導(dǎo)致屏幕上顯示的信號(hào)超出量程,此時(shí)選擇AC耦合,使用內(nèi)置的擱置電路來濾去直流分量。對(duì)于大多數(shù)的示波器,會(huì)有如下參數(shù),設(shè)置為AC耦合,此時(shí)測(cè)量的為10Hz以上的噪聲紋波。
圖8 示波器兩種耦合方式頻點(diǎn)
使用無源探頭AC耦合測(cè)試,設(shè)置如下:
(1)1Mohm端接匹配;
(2)AC耦合;
(3)全帶寬;
(4)offset設(shè)置為0
5.5 同軸線外部隔直電容DC50歐耦合測(cè)試
由于無源探頭的帶寬較低,而電源開關(guān)噪聲一般都在百M(fèi)Hz以上,同時(shí)電源內(nèi)阻一般在幾百毫歐以內(nèi),選擇高阻1Mohm的無源探頭對(duì)于高頻會(huì)產(chǎn)生反射現(xiàn)象,因此可以選擇用同軸線來代替無源探頭,此時(shí)示波器端接阻抗設(shè)置為50歐,與同軸線阻抗相匹配,根據(jù)傳輸線理論,電源噪聲沒有反射,此時(shí)認(rèn)為測(cè)量結(jié)果最準(zhǔn)確。
利用同軸線的測(cè)量方法,最準(zhǔn)確的是采用DC50歐,但是大部分示波器在DC50歐時(shí)offset最大電壓為1V,無法滿足大部分電源的測(cè)量要求,而示波器內(nèi)部端接阻抗為50歐時(shí),不支持AC耦合,因此需要外置一個(gè)AC電容,如圖9所示,當(dāng)串聯(lián)電容值為10uF時(shí),根據(jù)表3可以看到,此時(shí)可以準(zhǔn)確測(cè)試到2KHz以上的紋波噪聲信號(hào)。
圖9 同軸線DC50測(cè)量圖
5.6 同軸線AC1M歐耦合測(cè)試
由于從PMU出來的電源紋波噪聲大多集中在1MHz以內(nèi),如果采用同軸線DC50外置隔直電容測(cè)量方法,低頻噪聲分量損失較為嚴(yán)重,因此改用圖10所示的測(cè)量方法,利用同軸線傳輸信號(hào),示波器設(shè)置為AC1M,這樣雖然存在反射,但是反射信號(hào)經(jīng)過較長(zhǎng)CABLE線折返傳輸后,影響是有限的,示波器在R2上采集電壓值可以認(rèn)為仍然可以被參考。
圖10 同軸線AC1M測(cè)量圖
為了避免反射,在同軸線接到示波器的接口處端接一個(gè)50ohm電阻,使示波器輸入阻抗和cable線特征阻抗匹配。
圖11 同軸線AC1M測(cè)量改進(jìn)圖
5.7 差分探頭外置電容DC耦合測(cè)試
由于示波器的探頭地和機(jī)殼地通過一個(gè)小電容接在一起,而示波器的機(jī)殼地又通過三角插頭和大地接在一起,在實(shí)驗(yàn)室里,幾乎所有的設(shè)備地都和大地接在一起,示波器內(nèi)部地線接法如圖12所示,因此上面介紹的兩種方法都無法解決地干擾問題,為了解決這個(gè)問題,需要引入浮地示波器或者差分探頭。
圖12示波器內(nèi)部地線接法
如圖13所示,為差分接法,由于差分探頭為有源探頭,外置差動(dòng)放大器,可以將待測(cè)信號(hào)通過差分方式接入,使示波器的地和待測(cè)件地隔離開,達(dá)到浮地效果。但是差分探頭在示波器內(nèi)部只能DC50歐耦合,而offset最大一般不超過1V,因此需要在差分探頭上串聯(lián)隔直電容。使用差分探頭測(cè)量時(shí)關(guān)鍵是探頭的CMRR要足夠大,這樣才能有效抑制共模噪聲
圖13差分探頭外置電容DC耦合接法示意圖
5.8 差分探頭衰減DC耦合測(cè)試
當(dāng)采用差分探頭外置電容DC耦合時(shí),同樣存在截止頻率的問題,測(cè)量的結(jié)果會(huì)損失一些低頻分量,為了解決這個(gè)問題,可以將差分探頭衰減10倍,示波器會(huì)將采集到的電壓值乘10顯示出來,這個(gè)時(shí)候offset設(shè)置也會(huì)放大到10V,能夠滿足終端類產(chǎn)品的直流電壓偏置。
圖14 差分探頭衰減DC耦合測(cè)試接法示意圖
6 電源模塊電壓測(cè)試
由于本模塊是POE電源,測(cè)試所使用的輸入電壓取自于網(wǎng)口,PSE供電模塊會(huì)和本模塊先進(jìn)行握手通信,PSE設(shè)備確定后面所接的是PD設(shè)備后,才給PD設(shè)備供電。如圖15所示為一個(gè)PoE SWITCH設(shè)備。
圖15 PoE SWITCH設(shè)備
如圖16所示為本模塊電路,電路長(zhǎng)大約6.2cm,寬大約2.65cm,高大約1.5cm。
圖16 POE電源模塊
由于給POE電源是通過網(wǎng)口供電的,本模塊沒有特別設(shè)計(jì)一個(gè)網(wǎng)絡(luò)端口來給供電,而是使用“硬件十萬個(gè)為什么”提供的開發(fā)板,此開發(fā)板是用來給物聯(lián)網(wǎng)編程用的,屬于工業(yè)兼學(xué)習(xí)使用的一塊開發(fā)板,可以使用開發(fā)板來實(shí)現(xiàn)wifi、GPRS、藍(lán)牙、串口、LORA、POE等功能的使用,故直接選擇此塊開發(fā)板來實(shí)現(xiàn)網(wǎng)絡(luò)端口供電。如圖17所示為網(wǎng)絡(luò)供電端口。
圖17 網(wǎng)絡(luò)端口供電模塊
6.1 輸入電壓測(cè)量
圖18所示為通過網(wǎng)絡(luò)端口過后在POE電源輸入端口測(cè)的電壓,此次所使用的示波器是鼎陽(yáng)牌SDS1000X-C數(shù)字示波器。
圖18 輸入電壓波形
輸入電壓也有一定的紋波,圖19所示就是輸入電壓的紋波,可以看出紋波還是比較小的,是可以接受的紋波范圍。
圖19 輸入電壓紋波測(cè)試
6.2 輸出電壓測(cè)量
本模塊輸出電壓應(yīng)該是5V輸出,但是由于很難把電壓一直穩(wěn)定在5V不變。
圖20所示就是輸出電壓測(cè)試,從萬用表中看出,輸出電壓在5.1V。
圖20 輸出電壓測(cè)試
輸出電壓也是有紋波的,圖21所示就是輸出電壓的紋波測(cè)試圖。
圖21 輸出電壓紋波
從輸出紋波可以看出,此紋波在可接受范圍內(nèi)的。
7 總結(jié)
本文檔簡(jiǎn)要介紹了POE電源的基礎(chǔ)知識(shí),以及整塊電路芯片以及元件選型,電路原理的介紹。電源紋波的產(chǎn)生以及測(cè)試方法的介紹,POE電源的測(cè)試設(shè)備介紹,以及輸入輸出電壓的測(cè)量等。
推薦閱讀: