国产精品亚洲欧美一区麻豆_亚洲国产精品高清在线观看_ 国产一区二区在线观看app-亚洲国产成人久久综合野外-国产永久在线视频-国产va免费精品

你的位置:首頁 > 電路保護(hù) > 正文

放大器電路設(shè)計(jì)中,如何避免這些bug?

發(fā)布時(shí)間:2018-04-28 來源:貿(mào)澤工程師社區(qū) 責(zé)任編輯:lina

【導(dǎo)讀】與分立器件相比,現(xiàn)代集成運(yùn)算放大器(op amp)和儀表放大器(in-amp)為設(shè)計(jì)工程師帶來了許多好處。雖然提供了許多巧妙、有用并且吸引人的電路。往往都是這樣,由于倉促地組裝電路而會(huì)忽視了一些非常基本的問題,從而導(dǎo)致電路不能實(shí)現(xiàn)預(yù)期功能 - 或者可能根本不工作。本文將討論一些最常見的應(yīng)用問題,并給出實(shí)用的解決方案。

AC耦合時(shí)缺少DC偏置電流回路
 
最常遇到的一個(gè)應(yīng)用問題是在交流(AC)耦合運(yùn)算放大器或儀表放大器電路中沒有提供偏置電流的直流(DC)回路。在圖1中,一只電容器與運(yùn)算放大器的同相輸入端串聯(lián)以實(shí)現(xiàn)AC耦合,這是一種隔離輸入電壓(VIN)的DC分量的簡單方法。這在高增益應(yīng)用中尤其有用,在那些應(yīng)用中哪怕運(yùn)算放大器輸入端很小的直流電壓都會(huì)限制動(dòng)態(tài)范圍,甚至導(dǎo)致輸出飽和。然而,在高阻抗輸入端加電容耦合,而不為同相輸入端的電流提供DC通路,會(huì)出現(xiàn)問題。
 
圖1.錯(cuò)誤的運(yùn)算放大器AC耦合
 
實(shí)際上,輸入偏置電流會(huì)流入耦合的電容器,并為它充電,直到超過放大器輸入電路的共模電壓的額定值或使輸出達(dá)到極限。根據(jù)輸入偏置電流的極性,電容器會(huì)充電到電源的正電壓或負(fù)電壓。放大器的閉環(huán)DC增益放大偏置電壓。
 
這個(gè)過程可能會(huì)需要很長時(shí)間。例如,一只場效應(yīng)管(FET)輸入放大器,當(dāng)1 pA的偏置電流與一個(gè)0.1μF電容器耦合時(shí),其充電速率I/C為10–12/10–7=10 μV/s,或每分鐘600μV。如果增益為100,那么輸出漂移為每分鐘0.06 V。因此,一般實(shí)驗(yàn)室測(cè)試(使用AC耦合示波器)無法檢測(cè)到這個(gè)問題,而電路在數(shù)小時(shí)之后才會(huì)出現(xiàn)問題。顯然,完全避免這個(gè)問題非常重要。
 
圖2.正確的雙電源供電運(yùn)算放大器
 
圖2示出了對(duì)這常見問題的一種簡單的解決方案。這里,在運(yùn)算放大器輸入端和地之間接一只電阻器,為輸入偏置電流提供一個(gè)對(duì)地回路。為了使輸入偏置電流造成的失調(diào)電壓最小,當(dāng)使用雙極性運(yùn)算放大器時(shí),應(yīng)該使其兩個(gè)輸入端的偏置電流相等,所以通常應(yīng)將R1的電阻值設(shè)置成等于R2和R3的并聯(lián)阻值。
 
然而,應(yīng)該注意的是,該電阻器R1總會(huì)在電路中引入一些噪聲,因此要在電路輸入阻抗、輸入耦合電容器的尺寸和電阻器引起的Johnson噪聲之間進(jìn)行折衷。典型的電阻器阻值一般在100,000Ω ~1 MΩ之間。
 
類似的問題也會(huì)出現(xiàn)在儀表放大器電路中。圖3示出了使用兩只電容器進(jìn)行AC耦合的儀表放大器電路,沒有提供輸入偏置電流的返回路徑。這個(gè)問題在使用雙電源(圖3a)和單電源(圖3b)供電的儀表放大器電路中很常見。
 
圖3.不工作的AC耦合儀表放大器實(shí)例
 
這類問題也會(huì)出現(xiàn)在變壓器耦合放大器電路中,如圖4所示,如果變壓器次級(jí)電路中沒有提供DC對(duì)地回路,該問題就會(huì)出現(xiàn)。
 
圖4.不工作的變壓器耦合儀表放大器電路
 
圖5和圖6示出了這些電路的簡單解決方案。這里,在每一個(gè)輸入端和地之間都接一個(gè)高阻值的電阻器(RA,BR)。這是一種適合雙電源儀表放大器電路的簡單而實(shí)用的解決方案。
 
a.雙電源. b.單電源.
這兩只電阻器為輸入偏置電流提供了一個(gè)放電回路。在圖5所示的雙電源例子中,兩個(gè)輸入端的參考端都接地。在圖5b所示的單電源例子中,兩個(gè)輸入端的參考端或者接地(VCM接地)或者接一個(gè)偏置電壓,通常為最大輸入電壓的一半。
 
同樣的原則也可以應(yīng)用到變壓器耦合輸入電路(見圖6),除非變壓器的次級(jí)有中間抽頭,它可以接地或接VCM。
 
在該電路中,由于兩只輸入電阻器之間的失配和(或)兩端輸入偏置電流的失配會(huì)產(chǎn)生一個(gè)小的失調(diào)電壓誤差。為了使失調(diào)誤差最小,在儀表放大器的兩個(gè)輸入端之間可以再接一只電阻器(即橋接在兩只電阻器之間),其阻值大約為前兩只電阻器的1/10(但與差分源阻抗相比仍然很大)。
 
圖6.正確的儀表放大器變壓器輸入耦合方法
 
為儀表放大器、運(yùn)算放大器和ADC提供參考電壓
 
圖7示出一個(gè)儀表放大器驅(qū)動(dòng)一個(gè)單端輸入的模數(shù)轉(zhuǎn)換器(ADC)的單電源電路。該放大器的參考電壓提供一個(gè)對(duì)應(yīng)零差分輸入時(shí)的偏置電壓,而ADC的參考電壓則提供比例因子。在儀表放大器的輸出端和ADC的輸入端之間通常接一個(gè)簡單的RC低通抗混疊濾波器以減少帶外噪聲。設(shè)計(jì)工程師通??傁氩捎煤唵蔚姆椒ǎ珉娮璺謮浩?,為儀表放大器和ADC提供參考電壓。因此在使用某些儀表放大器時(shí),會(huì)產(chǎn)生誤差。
 
圖7.儀表放大器驅(qū)動(dòng)ADC的典型單電源電路
 
正確地提供儀表放大器的參考電壓
 
一般假設(shè)儀表放大器的參考輸入端為高阻抗,因?yàn)樗且粋€(gè)輸入端。所以使設(shè)計(jì)工程師一般總想在儀表放大器的參考端引腳接入一個(gè)高阻抗源,例如一只電阻分壓器。這在某些類型儀表放大器的使用中會(huì)產(chǎn)生嚴(yán)重誤差(見圖8)。
 
圖8.錯(cuò)誤地使用一個(gè)簡單的電阻分壓器直接驅(qū)動(dòng)3運(yùn)放儀表放大器的參考電壓
 
例如,流行的儀表放大器設(shè)計(jì)配置使用上圖所示的三運(yùn)放結(jié)構(gòu)。其信號(hào)總增益為
 

 
參考電壓輸入端的增益為1(如果從低阻抗電壓源輸入)。但是,在上圖所示的電路中,儀表放大器的參考輸入端引腳直接與一個(gè)簡單的分壓器相連。這會(huì)改變減法器電路的對(duì)稱性和分壓器的分壓比。這還會(huì)降低儀表放大器的共模抑制比及其增益精度。然而,如果接入R4,那么該電阻的等效電阻會(huì)變小,減小的電阻值等于從分壓器的兩個(gè)并聯(lián)支路看過去的阻值(50 kΩ),該電路表現(xiàn)為一個(gè)大小為電源電壓一半的低阻抗電壓源被加在原值R4上,減法器電路的精度保持不變。
 
如果儀表放大器采用封閉的單封裝形式(一個(gè)IC),則不能使用這種方法。此外,還要考慮分壓電阻器的溫度系數(shù)應(yīng)該與R4和減法器中的電阻器保持一致。最終,參考電壓將不可調(diào)。另一方面,如果嘗試減小分壓電阻器的阻值使增加的電阻大小可忽略,這樣會(huì)增大電源電流的消耗和電路的功耗。在任何情況下,這種笨拙的方法都不是好的設(shè)計(jì)方案。
 
圖9示出了一個(gè)更好的解決方案,在分壓器和儀表放大器參考電壓輸入端之間加一個(gè)低功耗運(yùn)算放大器緩沖器。這會(huì)消除阻抗匹配和溫度系數(shù)匹配的問題,而且很容易對(duì)參考電壓進(jìn)行調(diào)節(jié)。
 
圖9.利用低輸出阻抗運(yùn)算放大器驅(qū)動(dòng)儀表放大器的參考電壓輸入端
 
當(dāng)從電源電壓利用分壓器為放大器提供參考電壓時(shí)應(yīng)保證PSR性能
 
一個(gè)經(jīng)常忽視的問題是電源電壓VS的任何噪聲、瞬變或漂移都會(huì)通過參考輸入按照分壓比經(jīng)過衰減后直接加在輸出端。實(shí)際的解決方案包括旁路濾波以及甚至使用精密參考電壓IC產(chǎn)生的參考電壓,例如ADR121,代替VS分壓。
 
當(dāng)設(shè)計(jì)帶有儀表放大器和運(yùn)算放大器的電路時(shí),這方面的考慮很重要。電源電壓抑制技術(shù)用來隔離放大器免受其電源電壓中的交流聲、噪聲和任何瞬態(tài)電壓變化的影響。這是非常重要的,因?yàn)樵S多實(shí)際電路都包含、連接著或存在于只能提供非理想的電源電壓的環(huán)境之中。另外電力線中的交流信號(hào)會(huì)反饋到電路中被放大,而且在適當(dāng)?shù)臈l件下會(huì)引起寄生振蕩。
 
現(xiàn)代的運(yùn)算放大器和儀表放大器都提供頻率相當(dāng)?shù)偷碾娫措妷阂种?PSR)能力作為其設(shè)計(jì)的一部分。這在大多數(shù)工程師看來是理所當(dāng)然的。許多現(xiàn)代的運(yùn)算放大器和儀表放大器的PSR指標(biāo)在80~100dB以上,可以將電源電壓的變化影響衰減到1/10,000~1/100,000。甚至最適度的40 dB PSR的放大器隔離對(duì)電源也可以起到1/100的抑制作用。不過,總是需要高頻旁路電容(正如圖1~7所示)并且經(jīng)常起到重要作用。
 
此外,當(dāng)設(shè)計(jì)工程師采用簡單的電源電壓電阻分壓器并且用一只運(yùn)算放大器緩沖器為儀表放大器提供參考電壓時(shí),電源電壓中的任何變化都會(huì)通過該電路不經(jīng)衰減直接進(jìn)入儀表放大器的輸出級(jí)。因此,除非提供低通濾波器,否則IC通常優(yōu)良的PSR性能會(huì)丟失。
 
在圖10中,在分壓器的輸出端增加一個(gè)大電容器以濾除電源電壓的變化并且保證PSR性能。濾波器的-3 dB極點(diǎn)由電阻器R1/R2并聯(lián)和電容器C1決定。-3 dB極點(diǎn)應(yīng)當(dāng)設(shè)置在最低有用頻率的1/10處。
 
圖10.保證PSR性能的參考端退耦電路
 
上面示出的CF試用值能夠提供大約0.03 Hz的–3 dB極點(diǎn)頻率。接在R3兩端的小電容器(0.01 μF)可使電阻器噪聲最小。
 
該濾波器充電需要時(shí)間。按照試用值,參考輸入的上升時(shí)間應(yīng)是時(shí)間常數(shù)的幾倍(這里T=R3Cf= 5 s),或10~15s。
 
圖11中的電路做了進(jìn)一步改進(jìn)。這里,運(yùn)算放大器緩沖器起到一個(gè)有源濾波器的作用,它允許使用電容值小很多的電容器對(duì)同樣大的電源退耦。此外,有源濾波器可以用來提高Q值從而加快導(dǎo)通時(shí)間。
 
圖11.將運(yùn)算放大器緩沖器接成有源濾波器驅(qū)動(dòng)儀表放大器的參考輸入引腳
 
測(cè)試結(jié)果:利用上圖所示的元件值,施加12 V電源電壓,對(duì)儀表放大器的6 V參考電壓提供濾波。將儀表放大器的增益設(shè)置為1,采用頻率變化的1 VP-P正弦信號(hào)調(diào)制12 V電源。在這樣的條件下,隨著頻率的減小,一直減到大約8 Hz時(shí),我們?cè)谑静ㄆ魃峡床坏紸C信號(hào)。當(dāng)對(duì)儀表放大器施加低幅度輸入信號(hào)時(shí),該電路的測(cè)試電源電壓范圍是4 V到25 V以上。電路的導(dǎo)通時(shí)間大約為2 s。
 
單電源運(yùn)算放大器電路的退耦
 
最后,單電源運(yùn)算放大器電路需要偏置共模輸入電壓幅度以控制AC信號(hào)的正向擺幅和負(fù)向擺幅。當(dāng)從電源電壓利用分壓器提供偏置電壓時(shí),為了保證PSR的性能就需要合適的退耦。
 
一種常用但不正確的方法是利用100 kΩ/100 kΩ電阻分壓器(加0.1μF旁路電容)提供VS/2給運(yùn)算放大器的同相輸入端。使用這樣小的電容值對(duì)電源退耦通常是不夠的,因?yàn)闃O點(diǎn)僅為32 Hz。電路出現(xiàn)不穩(wěn)定(“低頻振蕩”),特別是在驅(qū)動(dòng)感性負(fù)載時(shí)。
 
圖12(反相輸入)和圖13(同相輸入)示出了達(dá)到最佳退耦結(jié)果的VS/2偏置電路。在兩種情況中,偏置電壓加在同相輸入端,反饋到反向輸入端以保證相同的偏置電壓,并且單位DC增益也要偏置相同的輸出電壓。耦合電容器C1使低頻增益從BW3降到單位增益。
 
圖12.單電源同相輸入放大器電路正確的電源退耦方案。中頻增益=1+R2/R1
 
如上圖所示,當(dāng)采用100 kΩ/100 kΩ電阻分壓器時(shí)一個(gè)好的經(jīng)驗(yàn)是,為獲得0.3 Hz的–3 dB截止頻率,應(yīng)當(dāng)選用的C2最小為10 ΩF,。而100 μF(0.03 Hz)實(shí)際上對(duì)所有電路都足夠了。
 
圖13.單電源反相輸入放大器正確的退耦電路,中頻增益= – R2/R1


推薦閱讀:
高容量MLCC測(cè)不準(zhǔn)?原來你忽略了這六個(gè)因素
貿(mào)澤電子技術(shù)論壇于4月25日在武漢順利召開
深度包檢測(cè)技術(shù)在汽車網(wǎng)絡(luò)的應(yīng)用
解析多路選擇器的工作原理及電路實(shí)現(xiàn)
ILOPE-2018北京光電周暨地3屆中國國際激光、光電子及光電顯顯示產(chǎn)品展覽會(huì)
要采購運(yùn)算放大器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉